Simulink® PLC Coder™
User's Guide

<4

MATLAB&SIMULINK?

R2018b >) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® PLC Coder™ User's Guide
© COPYRIGHT 2010-2018 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 2010a)
Revised for Version 1.1 (Release 2010Db)
Revised for Version 1.2 (Release 2011a)
Revised for Version 1.2.1 (Release 2011b)
Revised for Version 1.3 (Release 2012a)
Revised for Version 1.4 (Release 2012b)
Revised for Version 1.5 (Release 2013a)
Revised for Version 1.6 (Release 2013b)
Revised for Version 1.7 (Release 2014a)
Revised for Version 1.8 (Release 2014b)
Revised for Version 1.9 (Release 2015a)
Revised for Version 2.0 (Release 2015b)
Revised for Version 2.1 (Release 2016a)
Revised for Version 2.2 (Release 2016b)
Revised for Version 2.3 (Release 2017a)
Revised for Version 2.4 (Release 2017Db)
Revised for Version 2.5 (Release 2018a)
Revised for Version 2.6 (Release 2018b)

Contents

Getting Started

1]

Simulink PLC Coder Product Description 1-2
Key Features i 1-2
PLC Code Generation in the Development Process 1-3
Expected Users 1-4
GloSSarY . .o vt 1-4
System Requirements 1-5
Issues with Anti-Virus Software 1-5
Supported IDE Platforms 1-6
IDEs Supported for Structured Text Generation 1-6
IDEs Supported for Ladder Diagram Code Generation 1-7
PLC Code Generation Workflow 1-8
Prepare Model for Structured Text Generation 1-9
Tasking Mode 1-9
SOIVETS . .o 1-9
Configuring Simulink Models for Structured Text
Code Generation 1-9
Checking System Compatibility for Structured Text Code
Generation e 1-14
Generate and Examine Structured Text Code 1-17
Generate Structured Text from the Model Window 1-17
Generate Structured Text with the MATLAB Interface 1-19
View Generated Code it 1-20
Propagate Block Descriptions to Code Comments 1-22
Files Generated with Simulink PLC Coder 1-23

vi

Contents

Specify Custom Names for Generated Files 1-26

Import Structured Text Code Automatically 1-27
PLC IDEs That Qualify for Importing Code Automatically . . . 1-27
Generate and Automatically Import Structured Text Code ... 1-27
Troubleshoot Automatic Import Issues 1-28

Using Simulink Test with Simulink PLC Coder 1-31
Limitations i 1-33

Simulation and Code Generation of Motion Instructions . . . 1-34
Workflow for Using Motion Instructions in Model 1-34
Simulation of the Motion APIModel 1-37
Structured Text Code Generation 1-39
Adding Support for Other Motion Instructions 1-39

Mapping Simulink Semantics to Structured Text

2|

Generated Code Structure for Simple Simulink

Subsystems 2-2
Generated Code Structure for Reusable Subsystems 2-4
Generated Code Structure for Triggered Subsystems 2-7
Generated Code Structure for Stateflow Charts 2-9

Stateflow Chart with Event Based Transitions 2-9
Stateflow Chart with Absolute Time Temporal Logic 2-11
Generated Code Structure for MATLAB Function Block 2-14
Generated Code Structure for Multirate Models 2-16

Generated Code Structure for Subsystem Mask

Parameters 2-18
Global Tunable Parameter Initialization for PC WORX 2-23
Considerations for Non-Intrinsic Math Functions 2-24

Generating Ladder Diagram

3|

Ladder Diagram Generation for PLC Controllers
Ladder Diagram Generation Workflow

Prepare Chart for Ladder Diagram Generation 3-6
Design PLC Application with Stateflow 3-6
Create Test Harness for Chart 3-7

Generate Ladder Diagram Code from Stateflow Chart 3-10
Stateflow Chart and Ladder Logic Diagram 3-10
Generate Ladder Diagram from Chart 3-13
Generate Ladder Diagram Along with Test Bench 3-13

Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate

Diagram 3-15
Import Ladder Diagram XML 3-15
Verify Ladder Diagram with Test Bench 3-18

Restrictions on Stateflow Chart for Ladder Diagram
Generation e, 3-19
Import Ladder Diagram into Simulink 3-22
Supported Features 3-23
Supported Ladder Elements 3-23
Import L5X Ladder Files into Simulink 3-25
Description of the Ladder Diagram 3-25
Import Ladder Diagram, 3-26

Generating Test Bench Code

4

How Test Bench Verification Works 4-2

Integrate Generated Code with Custom Code 4-3

viii

Import and Verify Structured Text Code 4-5
Generate, Import, and Verify Structured Text 4-5
Import and Verify Structured Text to PHOENIX CONTACT

(previously KW) Software MULTIPROG 5.0 and Phoenix

Contact PCWORX6.0IDEs 4-6
Troubleshooting: Long Test Bench Code Generation Time 4-7
Verify Generated Code with Multiple Test Benches 4-9
Troubleshooting: Test Data Exceeds Target Data Size 4-11

Code Generation Reports

S|

Information in Code Generation Reports 5-2
Create and Use Code Generation Reports 5-4
Generate a Traceability Report from Configuration
Parameters i e 5-4
Keepthe Report Current 5-6
Trace from CodetoModel 5-7
Trace from ModeltoCode 5-8
Model Web View in Code Generation Report 5-9
Generate a Static Code Metrics Report 5-13
Generate a Traceability Report from the Command Line 5-14
View Requirements Links from Generated Code 5-16
Working with the Static Code Metrics Report 5-17
Workflow for Static Code Metrics Report 5-17
ReportContents 5-18
Function Block Information 5-19

Working with Tunable Parameters in the Simulink
PLC Coder Environment

6/

Contents

Block Parameters in Generated Code 6-2

Control Appearance of Block Parameters in Generated

Code 6-5
Configure Tunable Parameters with
Simulink.Parameter Objects 6-5
Make Parameters Tunable Using Configuration Parameters
Dialog BOXo 6-8

Controlling Generated Code Partitions

7

Generate Global Variables from Signals in Model 7-2

Control Code Partitions for Subsystem Block 7-3
Control Code Partitions Using Subsystem Block

Parameters 7-3

One Function Block for Atomic Subsystems 7-6

One Function Block for Virtual Subsystems 7-6

Multiple Function Blocks for Nonvirtual Subsystems 7-7

Control Code Partitions for MATLAB Functions in Stateflow
Charts 7-9

Integrating Externally Defined Symbols

8|

Integrate Externally Defined Symbols 8-2

Integrate Custom Function Block in Generated Code 8-3

ix

IDE-Specific Considerations

9

Integrate Generated Code with Siemens IDE Project 9-2
Integrate Generated Code with Siemens SIMATIC STEP 7
Projects o 9-2
Integrate Generated Code with Siemens TIA Portal
Projects

®
N

e
-

Use Internal Signals for Debugging in RSLogix 5000 IDE

Rockwell Automation RSLogix Considerations
Add-On Instruction and Function Blocks
Double-Precision Data Types
Unsigned Integer Data Types,
Unsigned Fixed-Point Data Types
Enumerated Data Types,

U dd

LQLQLPLQLQLQ

Considerations for Siemens IDEs
Double-Precision Floating-Point Data Types
int8 and Unsigned Integer Typesc.couuuu..
Unsigned Fixed-Point Data Types
Enumerated Data Typest
INOUT Variables

[(=J{=R{-J{- (-]

[(=I=N - -]

Supported Simulink and Stateflow Blocks

10|

Supported Blocks 10-2
View Supported Blocks Library 10-2
Supported Simulink Blocks 10-3
Supported Stateflow Blocks 10-11
Blocks with Restricted Support 10-11

X Contents

Limitations

11

Coder Limitations

Current Limitations . . .

rand Function Support Limitations
Workspace Parameter Data Type Limitations
Traceability Report Limitations

Fixed-Point Data Type L

imitations,

Multirate Model Limitations

Permanent Limitations

-

o

-
= e e e
SO EWWNDN

Functions — Alphabetical List

12

Configuration Parameters for Simulink PLC Coder

13|

Models

PLCCoder:General, 13-2
PLC Coder: General Tab Overview 13-3
Target IDE 13-3
Show Full Target List 13-6
Target IDEPath 13-7
Code Output Directory 13-9
Generate Testbench for Subsystem 13-9
Generate Functions Instead of Function Block 13-10
Emit Datatype Worksheet Tags for PCWorx 13-11
Aggressively Inline Structured Text Function Calls 13-12

PLC Coder: Comments 13-13
Comments OVEIVIEWt i ittt i e 13-14
Include Commentsc.iiiiiiiinn.. 13-14
Include Block Description 13-15
Simulink Block / Stateflow Object Comments 13-15
Show Eliminated Blocks 13-16

xi

PLC Coder: Optimization 13-18

Optimization Overview, 13-19
Default Parameter Behavior 13-19
Signal Storage Reuse 13-20
Remove Code from Floating-Point to Integer Conversions That
Wraps Out-Of-Range Values 13-22
Generate ReusableCode 13-22
Inline Named Constantsc.uuiuuunnn. 13-24
Reuse MATLAB Function Block Variables 13-25
Loop Unrolling Threshold 13-25
PLCCoder: Symbols 13-27
Symbols Overviewcouiiiiinennn. 13-28
Use Subsystem Instance Name as Function Block Instance
Name e 13-28
Override Target Default Maximum Identifier Length 13-29
Maximum Identifier Length 13-30
Override Target Default enum Name Behavior 13-30
Remove Top-level Subsystem ssmethod Type 13-31
Generate Logging Code0..... 13-32
Use the Same Reserved Names as Simulation Target 13-33
Reserved Namesciiiiiiin... 13-33
Externally Defined Symbols 13-34
Preserve Alias Type Names for Data Types 13-35
PLC Coder: Report, 13-37
Report Overview, 13-38
Generate Traceability Report 13-38
Generate Model Web View 13-39
Open Report Automatically 13-39

14

External Mode Logging 14-2

Generate Structured Text Code with Logging
Instrumentation 14-3

xii Contents

Use the Simulation Data Inspector to Visualize and Monitor

theloggingData 14-7
Set Up and Download Code to the Studio 5000 IDE 14-7
Configure RSLinx OPC Server, 14-8

Use PLC External Mode Commands to Stream and Display Live
LogDatac.0 i 14-9

xiii

Getting Started

* “Simulink PLC Coder Product Description” on page 1-2

* “PLC Code Generation in the Development Process” on page 1-3
* “Supported IDE Platforms” on page 1-6

* “PLC Code Generation Workflow” on page 1-8

* “Prepare Model for Structured Text Generation” on page 1-9

* “Generate and Examine Structured Text Code” on page 1-17

* “Propagate Block Descriptions to Code Comments” on page 1-22
» “Files Generated with Simulink PL.C Coder” on page 1-23

* “Specify Custom Names for Generated Files” on page 1-26

* “Import Structured Text Code Automatically” on page 1-27

» “Using Simulink Test with Simulink PL.C Coder” on page 1-31

* “Simulation and Code Generation of Motion Instructions” on page 1-34

1 Getting Started

Simulink PLC Coder Product Description

1-2

Generate IEC 61131-3 Structured Text and ladder diagrams for PLCs and PACs

Simulink PLC Coder generates hardware-independent IEC 61131-3 Structured Text and
ladder diagrams from Simulink models, Stateflow® charts, and MATLAB® functions. The
Structured Text and ladder diagrams are generated in PLCopen XML and other file
formats supported by widely used integrated development environments (IDEs) including
3S-Smart Software Solutions CODESYS, Rockwell Automation® Studio 5000, Siemens®
TIA Portal, and OMRON® Sysmac® Studio. As a result, you can compile and deploy your
application to numerous programmable logic controller (PLC) and programmable
automation controller (PAC) devices.

Simulink PLC Coder generates test benches that help you verify the Structured Text and
ladder diagrams using PLC and PAC IDEs and simulation tools. It also provides code
generation reports with static code metrics and bidirectional traceability between model
and code. Support for industry standards is available through IEC Certification Kit (for
[EC 61508 and IEC 61511).

Key Features

* Automatic generation of IEC 61131-3 Structured Text and ladder diagrams

» IDE support, including 3S-Smart Software Solutions CODESYS, Rockwell Automation
Studio 5000, Siemens TIA Portal, OMRON Sysmac Studio, and PLCopen XML

* Simulink support, including reusable subsystems, PID controller blocks, and lookup
tables

» Stateflow support, including state machines, graphical functions, and truth tables
* MATLAB support, including if-else statements, loop constructs, and math operations

» Support for multiple data types, including Boolean, integer, enumerated, and floating-
point, as well as vectors, matrices, buses, and tunable parameters

* Test bench creation

https://www.mathworks.com/products/iec-61508/

PLC Code Generation in the Development Process

PLC Code Generation in the Development Process

Simulink PLC Coder software lets you generate IEC 61131-3 compliant Structured Text
code from Simulink models. This software brings the Model-Based Design approach into
the domain of PLC and PAC development. Using the coder, system architects and
designers can spend more time fine-tuning algorithms and models through rapid
prototyping and experimentation, and less time on coding PLCs.

Typically, you use a Simulink model to simulate a design for realization in a PLC. Once
satisfied that the model meets design requirements, run the Simulink PLC Coder
compatibility checker utility. This utility verifies compliance of model semantics and
blocks for PLC target IDE code generation compatibility. Next, invoke the Simulink PLC
Coder tool, using either the command line or the user interface. The coder generates
Structured Text code that implements the design embodied in the model.

Usually, you also generate a corresponding test bench. You can use the test bench with
PLC emulator tools to drive the generated Structured Text code and evaluate its behavior.

The test bench feature increases confidence in the generated code and saves time spent
on test bench implementation. The design and test process are fully iterative. At any
point, you can return to the original model, modify it, and regenerate code.

At completion of the design and test phase of the project, you can easily export the
generated Structure Text code to your PLC development environment. You can then
deploy the code.

Using Simulink PLC Coder, you can also generate Ladder Diagram code for your
applications from a Stateflow chart. The benefits are:

* You can design your application by using states and transitions in a Stateflow chart.
Once you complete the design, you can generate Ladder Diagram code in XML or
another format. You then import the generated code to an IDE such as CODESYS 3.5
or RSLogix™ AOI 5000 and view the ladder diagram.

* When you test your Stateflow chart by using a set of inputs, you can reuse these inputs
to create a test bench for the Ladder Diagram code. You import the test bench to your
PLC IDE and compare the results of simulation with the results of running the ladder
diagram. If the results match, the original Stateflow chart is equivalent to the
generated Ladder Diagram code.

1-3

1 Getting Started

Expected Users

The Simulink PLC Coder product is a tool for control and algorithm design and test
engineers in the following applications:

* PLC manufacturing

* Machine manufacturing

* Systems integration

You must be familiar with:

* MATLAB and Simulink software and concepts

* PLCs

* Structured Text language

If you want to download generated code to a PLC IDE, you must also be familiar with your

chosen PLC IDE platform. For a list of these platforms, see “Supported IDE Platforms” on
page 1-6.

Glossary
Term Definition
PAC Programmable automation controller.
PLC Programmable logic controller.
IEC 61131-3 IEC standard that defines the Structured Text language for which the
Simulink PLC Coder software generates code.
PLCopen Vendor- and product-independent organization that works with the IEC

61131-3 standard. The Simulink PLC Coder product can generate Structured
Text using the PLCopen XML standard format. See http://
www.plcopen.org/pages/tc6 xml/xml intro/index.htm for details.

Structured Text High-level textual language defined by IEC 61131-3 standard for the

programming of PLCs.

function block Structured Text language programming concept that allows the encapsulation

and reuse of algorithmic functionality.

1-4

http://www.plcopen.org/pages/tc6_xml/xml_intro/index.htm
http://www.plcopen.org/pages/tc6_xml/xml_intro/index.htm

PLC Code Generation in the Development Process

System Requirements

For a list of related products, see System Requirements at the MathWorks® website.

Issues with Anti-Virus Software

The Simulink PLC Coder software ships with IDE-specific executables that are used in the
“Import Structured Text Code Automatically” on page 1-27 workflows. Some anti-virus
software identifies these files as malware. However, it has been determined that these
cases are false positives and that the files are safe. You can mark these files as safe in
your antivirus program.

1-5

https://www.mathworks.com/products/availability.html#PL

1 Getting Started

Supported IDE Platforms

1-6

IDEs Supported for Structured Text Generation

The Simulink PLC Coder product is tested with the following IDE platforms:

3S-Smart Software Solutions CODESYS Version 2.3 or 3.3 or 3.5 (SP4 or later)
B&R Automation Studio 3.0 or 4.0

Beckhoff TwinCAT 2.11 or 3

PHOENIX CONTACT Software MULTIPROG® 5.0 or 5.50.

PHOENIX CONTACT Software GmbH was previously called KW-Software GmbH. The
Simulink PL.C Coder software supports only the English version of MULTIPROG target
IDE.

OMRON Sysmac Studio Version 1.04, 1.05, 1.09 or 1.12
Phoenix Contact® PC WORX™ 6.0

The Simulink PLC Coder software supports only the English version of Phoenix
Contact PC WORKX target IDE.

Rexroth IndraWorks version 13V12 IDE

Rockwell Automation RSLogix 5000 Series Version 17, 18, 19 or 20 and Rockwell
Studio 5000 Logix Designer Version 21 or 24

Simulink PLC Coder can generate code for Add-On instructions (AOIs) and routine
code. The software supports automatic import and verification of generated code only
for the RSLogix IDEs and not the Studio 5000 IDE.

Siemens SIMATIC® STEP® 7 Version 5.3, 5.4 or 5.5

The Simulink PLC Coder software assumes that English systems use English S7. It
assumes that German systems use German S7.

Siemens TIA Portal V13
Generic
PLCopen XML

For a list of supported IDEs and platforms, see Supported IDEs at the MathWorks
website.

https://www.mathworks.com/hardware-support.html?fq=product:PL

Supported IDE Platforms

IDEs Supported for Ladder Diagram Code Generation

The Simulink PLC Coder product is tested with the following IDE platforms:

3S-Smart Software Solutions CODESYS Version 3.5 SP6

Rockwell Automation RSLogix 5000 Series Version 20 and Rockwell Studio 5000 Logix
Designer Version 24

PLCopen XML

1-7

1 Getting Started

PLC Code Generation Workflow

Your basic Simulink PL.C Coder workflow is:

Define and design a Simulink model from which you want to generate code.

N =

Identify the model components for which you want to generate code for importing to
a PLC.

Place the components in a Subsystem block.

Identify your target PLC IDE.

Select a solver.

Configure the Subsystem block to be atomic.

Check that the model is compatible with the Simulink PLC Coder software.
Simulate your model.

© 0 N OO U1 A W

Configure model parameters to generate code for your PLC IDE.
10 Examine the generated code.
11 Import code to your PLC IDE.

1-8

Prepare Model for Structured Text Generation

Prepare Model for Structured Text Generation

In this section...

“Tasking Mode” on page 1-9
“Solvers” on page 1-9
“Configuring Simulink Models for Structured Text Code Generation” on page 1-9

“Checking System Compatibility for Structured Text Code Generation” on page 1-14

Tasking Mode

This step is only required if your Simulink model contains multi-rate signals. If your
Simulink model does not contain multi-rate signals, you may proceed to solver selection.

Simulink PLC Coder only generates code for single-tasking subsystems. For multi-rate
subsystems, you must first explicitly set the tasking mode to single-tasking before

selecting a solver. In the model configuration, on the Solver pane, clear the check box for
Treat each discrete rate as a separate task.

Solvers

Choose a solver for your Simulink PL.C Coder model.

Model Solver Setting

Variable-step Use a continuous solver. Configure a fixed sample time for the
subsystem for which you generate code.

Fixed-step Use a discrete fixed-step solver.

Configuring Simulink Models for Structured Text Code
Generation

You must already have a model for which you want to generate and import code to a PLC
IDE. Before you use this model, perform the following steps.

1 Inthe Command Window, open your model.

1-9

1 Getting Started

1-10

[]
»
Scope
N o > &>
Sime Wave i Gain Qutt
1],
z

Configure the model to use the fixed-step discrete solver. Select Simulation >
Model Configuration Parameters and in the Solver pane, set Type to Fixed-step
and Solver to discrete (no continuous states).

If your model uses a continuous solver, has a subsystem, configure a fixed sample
time for the subsystem for which you generate code.

Save this model as plcdemo _simple subsysteml.

Create a subsystem containing the components for which you want to generate
Structured Text code.

Prepare Model for Structured Text Generation

Sine Wave

-j:l

o[
L
Scope
‘-l.:_ + '-.r:“‘:““h. - e o %
- Cut
- u
Copy
@, Paste

Comment Through
Comment Out

Delete

Connect Blocks

Create Subsystem from Selection
Log Selected Signals

Format
Rotate & Flip
Arrange

Requirements Traceability

C/C++ Code

Ctr+X
Ctrl+C
Ctrl+V
Ctrl+Shift+Y¥
Ctrl+Shift+X
Del

Ctrl+G

Optionally, rename Inl and Outl to U and Y respectively. This operation results in a
subsystem like the following figure:

1-11

1 Getting Started

|
i/
C

1
z

5 Save the model with the new subsystem.

In the top-level model, right-click the Subsystem block and select Block Parameters
(Subsystem).

7 In the resulting block dialog box, select Treat as atomic unit.

1-12

Prepare Model for Structured Text Generation

Block Parameters: SimpleSubsystern *
Subsystem

Select the settings for the subsystem block. To enable parameters for code
generation, select "Treat as atomic unit'.

Main Code Generation
Show port labels | FromPortIcon -

Read/Write permissions: ReadWrite hd

MName of error callback function:

Permit hierarchical resclution: |All -

Treat as atomic unit

[] Minimize algebraic loop occurrences
Sample time (-1 for inherited):

-1

Treat as grouped when propagating variant conditions

‘)- Cancel Help Apply

Click OK.
Simulate your model.

10 Save your model. In later procedures, you can use either this model, or the
plcdemo simple subsystem model that comes with your software.

You are now ready to:

1-13

1 Getting Started

1-14

» Set up your subsystem to generate Structured Text code. See “Checking System
Compatibility for Structured Text Code Generation” on page 1-14.

* Generate Structured Text code for your IDE. See “Generate and Examine Structured
Text Code” on page 1-17.

Checking System Compatibility for Structured Text Code

Generation

You must already have a model that you have configured to work with the Simulink PLC

Coder software.

1 In your model, navigate to the subsystem for which you want to generate code.

2 Right-click that Subsystem block and select PLC Code > Check Subsystem
Compatibility.

The coder checks whether your model satisfies the Simulink PLC Coder criteria.
When the checking is complete, a View diagnostics hyperlink appears at the bottom
of the model window. Click this hyperlink to open the Diagnostic Viewer window.

Diagnostic Viewer — O W

Ev %v £y - %v | .i")v |
plcdemo_simple_subsystem

* PLC Coder Generate Check Subsystem Compatibility @ 1

PLC compatibility check passed for
'plodemo_simple_subsystem/SimpleSubsystem’

If the subsystem is not atomic, right-click the Subsystem block and select PLC Code,
which prompts Enable “Treat as atomic unit” to generate code.

Prepare Model for Structured Text Generation

S e run

Requirements Traceability L4
Linear Analysis L4
Design Verifier L4
Coverage L4
Y Model Advisor L4

Fixed-Point Tool...

Maodel Transformer L4
Simple:
C/C++ Code 3
HOL Code L4
1s the code generated
o PLC Code 4 .. : e
To build the subsyste Enable "Treat as atomic unit" to generate code ...
Code for Subsystem. Polyspace " Mavigate to Code
MS h rlinks to the Block Parameters (Subsystem) Qﬁte’d files.
) Properties...
Copyright 2008-
Help

This command opens the block parameter dialog box. Select Treat as atomic unit.

1-15

1 Getting Started

Block Parameters: SimpleSubsystern *
Subsystem

Select the settings for the subsystem block. To enable parameters for code
generation, select "Treat as atomic unit'.

Main Code Generation
Show port labels | FromPortIcon -

Read/Write permissions: ReadWrite hd

MName of error callback function:

Permit hierarchical resclution: |All -

Treat as atomic unit

[] Minimize algebraic loop occurrences
Sample time (-1 for inherited):

-1

Treat as grouped when propagating variant conditions

J- Cancel Help Apply

You are now ready to generate Structured Text code for your IDE. See “Generate and
Examine Structured Text Code” on page 1-17.

1-16

Generate and Examine Structured Text Code

Generate and Examine Structured Text Code

In this section...

“Generate Structured Text from the Model Window” on page 1-17
“Generate Structured Text with the MATLAB Interface” on page 1-19
“View Generated Code” on page 1-20

Generate Structured Text from the Model Window

You must already have set up your environment and Simulink model to use the Simulink
PLC Coder software to generate Structured Text code. If you have not yet done so, see
“Prepare Model for Structured Text Generation” on page 1-9.

1 Ifyou do not have the plcdemo _simple subsystem model open, open it now.
2 Right-click the Subsystem block and select PLC Code > Options.

The Configuration Parameters dialog box is displayed.

1-17

1 Getting Started

& Configuration Parameters: plcdemo_simple_subsystem/Configuration (Active) — O X
Salver General options

Data Import/Export
Math and Data Types
Diagnostics Show full target list
Hardware Implementation
Maodel Referencing
Simulation Target

» Code Generation [] Generate testbench for subsystem Generate code...
» Coverage —
»
[

Target IDE: Phoenix Contact PC WORX 6.0 -

v

Target IDE Path: C:\Program Files\Phoenix Contact\Software Sui

Code Output Directory: | ./plcsrc

HDL Code Generation Target specific options
Design Verifier

¥ PLC Code Generation
Comments |:| Emit Datatype worksheet tags

Generate functions instead of function block

Optimization
Symbols
Report

OK Cancel Help Apply

1-18

3 On the PLC Code Generation pane, select an option from the Target IDE list, for
example, 3S CoDeSys 2.3.

The default Target IDE list displays the full set of supported IDEs. To see a reduced
subset of the target IDEs supported by Simulink PLC Coder, disable the option Show
full target list. To customize this list, use the plccoderpref function.

Click Apply.
5 Click Generate code.

This button:

Generate and Examine Structured Text Code

* Generates Structured Text code (same as the PLC Code > Generate Code for
Subsystem option)

* Stores generated code in model name.exp (for example,
plcdemo simple subsystem.exp)

When code generation is complete, a View diagnostics hyperlink appears at the
bottom of the model window. Click this hyperlink to open the Diagnostic Viewer
window.

Diagnostic Viewer — O e

E-E-&-%-|7- [&]
plcdemo_simple_subsystem

* PLC Coder Generate Code @ 1

PLC code generation successful for
'plcdemo_simple_subsystem/SimpleSubsystem'.

Generated files:
Aplesrciplcdemo simple subsystem.exp

This window has links that you can click to open the associated files. For more
information, see “Files Generated with Simulink PLC Coder” on page 1-23.

Generate Structured Text with the MATLAB Interface

You can generate Structured Text code for a subsystem in the Command Window with the
plcgeneratecode function. You must have already configured the parameters for the
model or, alternatively, you can use the default settings.

For example, to generate code from the SimpleSubsystem subsystem in the
plcdemo simple subsystem model:

1 Openthe plcdemo simple subsystem model:

plcdemo simple subsystem

1-19

1 Getting Started

1-20

Open the Configuration Parameters dialog box using the plcopenconfigset
function:

plcopenconfigset('plcdemo_simple subsystem/SimpleSubsystem')

Select a target IDE.

Configure the subsystem as described in “Prepare Model for Structured Text
Generation” on page 1-9.

Generate code for the subsystem:

generatedfiles = plcgeneratecode('plcdemo simple subsystem/SimpleSubsystem')

When using plcgeneratecode for code generation, all diagnostic messages are printed
to the MATLAB command window.

View Generated Code

After generating the code, you can view it in the MATLAB Editor. For a description of how
the generated code for the Simulink components map to Structured Text components, see
“PLC Code Generation Basics”. In addition, note the following:

Matrix data types: The coder converts matrix data types to single-dimensional vectors
(column-major) in the generated Structured Text.

Generated code header: If your model has author names, creation dates, and model
descriptions, the generated code contains these items in the header comments. The
header also lists fundamental sample times for the model and the subsystem block for
which you generate code.

Code comments: You can choose to propagate block descriptions to comments in
generated code. See “Propagate Block Descriptions to Code Comments” on page 1-
22.

The figure illustrates generated code for the CoDeSys Version 2.3 PLC IDE. Generated
code for other platforms, such as Rockwell Automation RSLogix 5000, is in XML or other
format and looks different.

Generate and Examine Structured Text Code

15
18
17
18
19
20
21
22
23
24
25
28
27
28
29
30
31
32
33
34
35
3&
37
38
39
40
41
42
43
44
45

47
48
43

FUNCTICH BLOCE SimpleSubsystem
VAR INFPUT
ssMethodType: SINT:
U: LREAL:
END_VAR
VAR OUTFPUT
T: LEREAL;
END_VAR
VAR
UnitDslay DSTATE: LEREAL;
END_VAR
VAR _TEMP
rth Gain: LREAL;
END VAR
CASE ssMethodType OF
55 INITIALIZE:
(* InitializeConditions for UnitDelay: '<31=/Unit Delay'
UnitDelay DSTATE := O;

35_OUTPUT:
(* Gain: '<31>/Gain' incorporates:
* Inport: '<Root=/T'
o Fum: '<S1x/Sum’
* UnitDelay: '<31>/Unit Delay'
*)

rth Gain := (U - UnitDslay DSTATE) * 0.5;

{(* Cutport: '<Root:/T' *)
T := rth_Gain;

(* Update for UnitDelay: '<31>/Unit Delay' *)
UnitDelay DSTATE := rtb_Gain:

END_CASE;:
END FUNCTICH BLOCK

*)

If you are confident that the generated Structured Text is good, optionally change your
workflow to automatically generate and import code to the target IDE. For more
information, see “Import Structured Text Code Automatically” on page 1-27.

1-21

1 Getting Started

Propagate Block Descriptions to Code Comments

1-22

You can propagate block descriptions from the model to comments in your generated
code.

For specific IDEs, you can propagate the block descriptions into specific XML tags in the
generated code. The IDEs use the tags to create a readable description of the function

blocks in the IDE.

For Rockwell Automation RSLogix 5000 AOI/routine target IDEs, the coder propagates
block descriptions from the model into the L5X AdditionalHelpText XML tag. The
IDE can then import the tag as part of AOI and routine definition in the generated
code.

For CoDeSys 3.5 IDE, the coder propagates block descriptions from the model into the
documentation XML tag. When you import the generated code into the CoDeSys 3.5
IDE, the IDE parses the content of this tag and provides readable descriptions of the
function blocks in your code.

To propagate block descriptions to comments:

1 Enter a description for the block.
a Right-click the block for which you want to write a description and select
Properties.
b On the General tab, enter a block description.
2 Before code generation, specify that block descriptions must propagate to code

comments.

a Right-click the subsystem for which you are generating code and select PLC
Code > Options.

b Select the option Include block description on page 13-15.

Your block description appears as comments in the generated code.

Files Generated with Simulink PLC Coder

Files Generated with Simulink PLC Coder

The Simulink PLC Coder software generates Structured Text code and stores it according
to the target IDE platform. These platform-specific paths are default locations for the
generated code. To customize generated file names, see “Specify Custom Names for
Generated Files” on page 1-26.

Platform Generated Files

3S-Smart current folder\plcsrc\model name.exp — Structured Text file for
Software importing to the target IDE.

Solutions

CoDeSys 2.3

3S-Smart current _folder\plcsrc\model name.xml — Structured Text file for
Software importing to the target IDE.

Solutions

CoDeSys 3.3

3S-Smart current folder\plcsrc\model name.xml — Structured Text file for
Software importing to the target IDE.

Solutions

CoDeSys 3.5

B&R The following files in current folder\plcsrc\model name — Files for
Automation importing to the target IDE:

Studio IDE

* Package.pkg — (If test bench is generated) Top-level package file for function
blocks library and test bench main program in XML format.

In the main folder (if test bench is generated):

* IEC.prg — Test bench main program definition file in XML format.

* mainInit.st — Text file. Test bench init program file in Structured Text.

* mainCyclic.st — Text file. Test bench cyclic program file in Structured Text.
* mainExit.st — Text file. Test bench exit program file in Structured Text.

* main.typ — Text file. Main program type definitions file in Structured Text.

* main.var — Text file. Main program variable definitions file in Structured
Text.

1-23

1 Getting Started

Platform Generated Files

Beckhoff current folder\plcsrc\model name.exp — Structured Text file for
TwinCAT 2.11 |importing to the target IDE.

Beckhoff current _folder\plcsrc\model name.xml — Structured Text file for
TwinCAT 3 importing to the target IDE.

KW-Software current folder\plcsrc\model name.xml — Structured Text file, in XML
MULTIPROG format, for importing to the target IDE.

5.0

Phoenix current _folder\plcsrc\model name.xml — Structured Text file, in XML
Contact PC format, for importing to the target IDE.

WORX 6.0

Rockwell current folder\plcsrc\model name.L5X — (If test bench is generated)
Automation Structured Text file for importing to the target IDE using Add-On Instruction (AOI)
Studio 5000 constructs. This file is in XML format and contains the generated Structured Text
IDE: AOI code for your model.

Rockwell current folder\plcsrc\model name.L5X — (If test bench is generated)
Automation Structured Text file for importing to the target IDE using routine constructs. This

Studio 5000
IDE: Routine

file is in XML format and contains the generated Structured Text code for your
model.

In current_folder\plcsrc\model name (if test bench is not generated), the
following files are generated:

e subsystem block name.L5X — Structured Text file in XML format. Contains
program tag and UDT type definitions and the routine code for the top-level
subsystem block.

* routine name.L5X — Structured Text files in XML format. Contains routine
code for other subsystem blocks.

Rockwell
Automation
RSLogix 5000
IDE: AOI

current folder\plcsrc\model name.L5X — (If test bench is generated)
Structured Text file for importing to the target IDE using Add-On Instruction (AOI)
constructs. This file is in XML format and contains the generated Structured Text
code for your model.

1-24

Files Generated with Simulink PLC Coder

Platform Generated Files

Rockwell current folder\plcsrc\model name.L5X — (If test bench is generated)
Automation Structured Text file for importing to the target IDE using routine constructs. This
RSLogix 5000 |file is in XML format and contains the generated Structured Text code for your

IDE: Routine

model.

In current folder\plcsrc\model name (if test bench is not generated), the
following files are generated:

o subsystem block name.L5X — Structured Text file in XML format. Contains
program tag and UDT type definitions and the routine code for the top-level
subsystem block.

* routine name.L5X — Structured Text files in XML format. Contains routine
code for other subsystem blocks.

Siemens
SIMATIC STEP
7 IDE

current folder\plcsrc\model name\model name.scl — Structured Text
file for importing to the target IDE.

current folder\plcsrc\model name\model name.asc — (If test bench is
generated) Text file. Structured Text file and symbol table for generated test
bench code.

Siemens TIA

current folder\plcsrc\model name\model name.scl — Structured Text

Portal IDE file for importing to the target IDE.

Generic current folder\plcsrc\model name.st — Pure Structured Text file. If your
target IDE is not available for the Simulink PL.C Coder product, consider
generating and importing a generic Structured Text file.

PLCopen XML |current folder\plcsrc\model name.xml — Structured Text file formatted
using the PLCopen XML standard. If your target IDE is not available for the
Simulink PLC Coder product, but uses a format like this standard, consider
generating and importing a PLCopen XML Structured Text file.

Rexroth current _folder\plcsrc\model name.xml — Structured Text file for

IndraWorks importing to the target IDE.

OMRON current _folder\plcsrc\model name.xml — Structured Text file for

Sysmac Studio

importing to the target IDE.

1-25

1 Getting Started

Specify Custom Names for Generated Files

1-26

The Simulink PLC Coder software generates Structured Text code and stores it according
to the target IDE platform. These platform-specific paths are default locations for the
generated code. For more information, see “Files Generated with Simulink PL.C Coder” on
page 1-23.

To specify a different name for the generated files, set the Function name options
parameter in the Subsystem block:

1 Right-click the Subsystem block for which you want to generate code and select
Subsystem Parameters.
In the Main tab, select the Treat as atomic unit check box.
Click the Code Generation tab.

From the Function Packaging parameter list, select either Nonreusab'le
function or Reusable Function.

These options enable the Function name options and File name options
parameters.

5 Select the option that you want to use for generating the file name.

Function name options Generated File Name

Auto Default. Uses the model name, as listed
in “Prepare Model for Structured Text
Generation” on page 1-9, for example,
plcdemo simple subsystem.

Use subsystem name Uses the subsystem name, for example,
SimpleSubsystem.
User specified Uses the custom name that you specify

in the Function name parameter, for
example, SimpleSubsystem.

Import Structured Text Code Automatically

Import Structured Text Code Automatically

In this section...
“PLC IDEs That Qualify for Importing Code Automatically” on page 1-27
“Generate and Automatically Import Structured Text Code” on page 1-27

“Troubleshoot Automatic Import Issues” on page 1-28

PLC IDEs That Qualify for Importing Code Automatically

If you are confident that your model produces Structured Text that does not require visual
examination, you can generate and automatically import Structured Text code to one of
the following target PLC IDEs:

* 3S-Smart Software Solutions CoDeSys Version 2.3

* PHOENIX CONTACT (previously KW) Software MULTIPROG Version 5.0 or 5.50

* Phoenix Contact PC WORX Version 6.0

* Rockwell Automation RSLogix 5000 Version 17, 18, or 19

For the Rockwell Automation RSLogix routine format, you must generate testbench
code for automatic import and verification.

» Siemens SIMATIC STEP 7 Version 5.4 only for the following versions:

* Siemens SIMATIC Manager: Version V5.4+SP5+HF1, Revision K5.4.5.1
* S7-SCL: Version V5.3+SP5, Revision K5.3.5.0
* S7-PLCSIM: Version V5.4+SP3, Revision K5.4.3.0

Working with the default CoDeSys Version 2.3 IDE should require additional changes for
only the PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0/5.50 and
Phoenix Contact PC WORX 6.0 IDE. For information about automatically importing
Structured Text code to these IDEs, see “Import and Verify Structured Text to PHOENIX
CONTACT (previously KW) Software MULTIPROG 5.0 and Phoenix Contact PC WORX 6.0
IDEs” on page 4-6.

Generate and Automatically Import Structured Text Code

You can generate and automatically import Structured Text code. Before you start:

1-27

1 Getting Started

1-28

* In the target IDE, save your current project.
* Close open projects.
* Close the target IDE and target IDE-related windows.

Note While the automatic import process is in progress, do not use your mouse or
keyboard. Doing so might disrupt the process. When the process completes, you can
resume normal operations.

You must have already installed your target PLC IDE in a default location, and it must use
the CoDeSys V2.3 IDE. If you installed the target PLC IDE in a nondefault location, open
the Configuration Parameters dialog box. In the PLC Coder node, set the Target IDE
Path parameter to the installation folder of your PLC IDE. See “Target IDE Path” on page
13-7.

If it is not already started, open the Command Window.

Open the plcdemo _simple subsystem model.

Right-click the Subsystem block and select PLC Code > Generate and Import
Code for Subsystem.

The software:

Generates the code.

Starts the target IDE interface.

Creates a project.

Imports the generated code to the target IDE.

o N T 9

If you want to generate, import, and run the Structured Text code, see “Import and Verify
Structured Text Code” on page 4-5.

Troubleshoot Automatic Import Issues

Following are guidelines, hints, and tips for questions or issues you might have while
using the automatic import capability of the Simulink PLC Coder product.

Supported Target IDEs

The Simulink PLC Coder software supports only the following versions of target IDEs for
automatic import and verification:

Import Structured Text Code Automatically

* 3S-Smart Software Solutions CoDeSys Version 2.3

* PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0 or 5.50 (English)

* Phoenix Contact PC WORX 6.0 (English)

* Rockwell Automation RSLogix 5000 Series Version 17, 18, 19 (English)
For the Rockwell Automation RSLogix routine format, you must generate testbench
code for automatic import and verification.

* Siemens SIMATIC STEP 7 Version 5.4 (English and German)

Note Some antivirus softwares falsely identify the executables that implement the
automatic import feature as malware. This can be safely ignored. For more information,
see “Issues with Anti-Virus Software” on page 1-5.

Unsupported Target IDEs

The following target IDEs currently do not support automatic import. For these target

IDEs, the automatic import menu items (Generate and Import Code for Subsystem
and Generate, Import, and Verify Code for Subsystem) are disabled.

* 3S-Smart Software Solutions CoDeSys Version 3.3

* 3S-Smart Software Solutions CoDeSys Version 3.5

* B&R Automation Studio IDE

* Beckhoff TwinCAT 2.11, 3

* Generic

* PLCopen

* Rockwell Automation Studio 5000 Logix Designer (both routine and AOI constructs)

Possible Automatic Import Issues

When the Simulink PLC Coder software fails to finish automatically importing for the
target IDE, it reports an issue in a message dialog box. To remedy the issue, try the
following actions:

* Check that the coder supports the target IDE version and language setting
combination.

* Check that you have specified the target IDE path in the subsystem Configuration
Parameters dialog box.

1-29

1 Getting Started

1-30

Close currently open projects in the target IDE, close the target IDE completely, and
try again.

Some target IDEs can have issues supporting the large data sets the coder test bench
generates. In these cases, try to shorten the simulation cycles to reduce the data set
size, then try the automatic import again.

Other applications can interfere with automatic importing to a target IDE. Try to close
other unrelated applications on the system and try the automatic import again.

Using Simulink Test with Simulink PLC Coder

Using Simulink Test with Simulink PLC Coder

You can use Simulink Test™ with Simulink PLC Coder to author, manage, and execute
simulation-based tests of the generated code.

If you do not have the plcdemo simple subsystem model open, open it now.
Create a signal build test harness for the subsystem as shown. To create a test
harness for a subsystem, select the subsystem and select Analysis > Test Harness
> Create for <subsystem name>. Set test harness properties using the Create
Test Harness dialog box.

=<

Group 1
Signal 1 f——— U »> @

/"‘--
-

Signal Builder

Signal spec. Signal spec.
and routing and routing

SimpleSubsystem

3 Right-click the Subsystem block and select PLC Code > Options. The Configuration
Parameters dialog box is displayed.

1-31

1 Getting Started

G Configuration Parameters: plederno_simple_subsystern_Harness1/Cenfiguration {Active) — O >
Salver General options

Data Import/Export

Math and Data Types
» Diagnostics Show full target list

Hardware Implementation

Target IDE: 3S CoDeSys 2.3 |-

Target IDE Path: F\share\apps\3S-Softw
Model Referencing
Simulation Target Code Output Directory: |./plcsrc

» Code Generation Generate testbench for subsystem Generafte code...
k Coverage

» HDL Code Generation
k Design Verifier

¥ PLC Code Generation

Comments

Optimization
Symbols
Report
Ladder

OK Cancel Help Apply

4 Onthe PLC Code Generation pane, select a target and enable the Generate
testbench for subsystemoption.

5 Click Apply.

Right-click and select Generate code for the subsystem from the Test Harness
Window. The generated code contains multiple test-benches from the signal builder.
You can run this code in the PLC emulator to make sure it matches simulation.

1-32

Using Simulink Test with Simulink PLC Coder

Limitations

If you use anything other than a signal builder block in the test harness, you must
create a top-level atomic subsystem in the test harness that contains both the
subsystem under test and the testing blocks (for example, say test sequence block)
and generate code for this subsystem.

Simulink PL.C Coder does not yet support verify keyword in the test sequence block

Simulink PLC Coder does support duration keyword in the test sequence block but it
requires the generate code to be run with the same sample rate as in the Simulink
model

1-33

1 Getting Started

Simulation and Code Generation of Motion Instructions

1-34

The Simulink PLC Coder software supports a workflow for the behavioral simulation and
structured text code generation for the Rockwell Automation RSLogix motion control

instructions.

Workflow for Using Motion Instructions in Model

This workflow uses the “Simulating and Generating Structured Text Code for Rockwell
Motion Instructions” example in the plccoderdemos folder. This example provides a
template that you can use with motion instructions. It contains the following files:

Name

Description

MotionControllerExample.sl
X

Simulink model containing an example Stateflow
chart for modeling motion instructions.

DrivelLibrary.slx

Simulink library with a Stateflow chart that is used
for modeling a real world drive (axis) with
trajectories, delays, and other parameters.

MotionTypesForSim.mat

MAT-file containing the bus data types for the

AXIS SERVO DRIVE and MOTION INSTRUCTION.
The MotioncontrollerExample.slx model loads
the content of the MAT-file into the workspace. If you
are creating a new model you must load this MAT-file
for simulation and code generation.

Trajectory.m

MATLAB class file for implementing trapezoidal
velocity profile. This is used to simulate the behavior
of the Motion Axis Move (MAM) command.

MotionApiStubs.slx

Supporting file for code generation.

MotionInstructionType.m

MATLAB enumeration class file that represents the
type of motion API calls. For example, isMAM,
i1sMSF. This file is used only during simulation.

plc_keyword hook.m

Helper file to avoid name mangling and reserved
keyword limitations.

plcgeneratemotionapicode.p

Function that transforms the chart in the model to
make it suitable for code generation.

Before you start, copy the files in the example to the current working folder.

Simulation and Code Generation of Motion Instructions

Create a Simulink model with a Stateflow chart.

Load the bus data types from the MotionTypesForSim.mat file into the workspace
by using the load function.

Create data that represents the drive and motion instructions for the chart. For
information on adding data to Stateflow charts, see “Add Stateflow Data” (Stateflow)

Copy the drive(axis) model from the DrivelLibrary.slx file into the Stateflow
chart. The drive model must be copied as an atomic subchart.

[%a] MotionControlierExample b [Pa| Motioncontroller » T3 chart » T Driver b T3 Drive

[
[isMSO(MI_MSO)] {MI_MSF = mark_done(MI_MSF);}
{MI_MSO = mark_ip(MI_MSO);} ‘

MSO_Wait ’

MSF_Wait ’

[isSMSF(MI_MSF)]

{MI_MSO = mark_done(MI_MSO);} {MI_MSF = mark_ip(MI_MSF);}

(On

~
T [isMAM(MI_MAM)]
v {MI_MAM = mark_ip(MI_MAM);} (Moving
Stopped _| en: trajectory = ml.Trajectory(Axis.position, ...
Axis.MAMData.position,...
Axis.MAMData.speed., ...
Axis. MAMData.accelRate, ...
Axis.MAMData.decelRate);
tStart = t;
du:
[Axis.position,Axis.velocity,...
MI_MAM.ACCEL,MI_MAM.DECEL] = ...
[abs(Axis.position-Axis.MAMData.position)<0.01] ml.getPositionAndVelocity(trajectory,(t-tStart));
{
MI_MAM = mark_done(MI_MAM)
b \
- /

The drive logic Stateflow chart models a real world drive with parameters such as
trajectory and delay. Any drive subchart has the following data:

1-35

1 Getting Started

Name Port Resc DataType Size Initi CompiledType Compilec

5 Use the Subchart Mappings dialog to map the drive subchart data store memory
data with the local data of the appropriate names in the container chart. For more
information, see “Map Variables for Atomic Subcharts and Boxes” (Stateflow). The
“Simulating and Generating Structured Text Code for Rockwell Motion Instructions”
example has the following mapping gor Drivel.

State Drivel X
General Mappings Logging Documentati‘t*
Description

The following tables list the mappings from the
subchart symbols (on the left) to the symbols in
the main chart (on the right). For every subchart
symbol, the drop-down provides the list of
available symbols which that subchart symbol
can map to.
» Input Mapping
» Output Mapping
» Parameter Mapping
~ Data Store Memory Mapping
\tomic subchart symbc Main chart symbol

MI_MSF MI_MSF1 v

MI MSO MI MSO1 v|v
» INPUT_EVENT Mapping

OK Cancel Help Apply

6 Use graphical functions to create motion API instructions. For example, for the
Motion Servo On (MSO) instruction:

function [AxisTagOut,MITagOut] = MSO(AxisTag,MITag)

1-36

Simulation and Code Generation of Motion Instructions

function [AxisTagOut,MITagOut] = MSO(AxisTag,MITag)

{AxisTagOut = AxisTag;

MITagOut = MITag;

AxisTagOut.currentlnstruction = MotionInstructionType.isMSO;
MITagOut.EN = true;

MITagOut.IP = false;

MITagOut.DN = false;}

The mapping between the inputs to the outputs is through "pass by reference".

7 Create the controller logic in another subchart and use the motion instructions
created in the previous step in the chart. Controllerl in the example has the
following Stateflow chart.

Controllert

?
n ety
= MI_MSOT.DN = fase:
[Asis1.ML_MSOT] = /SO(Axist ML_MSOT):

Stop

enry:
MI_MSF1.DN=false:

[Axis1 MI_MSF1] = MSF(Axis1,M|_MSF1);

Simulation of the Motion APl Model

You can run simulation on the model containing the motion instructions and see the state
changes the controller chart and the Drive subchart. You can also log the local data of
the chart such as AXIS and the MOTION INSTRUCTION variables For more information,
see “Configure States and Data for Logging” (Stateflow).

1-37

1 Getting Started

e Edt View Tools Add Help
BO fB0R Mk & % B 4 D+ 58T
Search: [by Name | Name: | | 64 search
Model Hierarchy =2 contents of: Moti ntroller/Chart (only) | Filter Contents. Data Axis
v Py simuiink Root Conmn view: [Soaenom 1 snom Dets o O General Logging Description
Base Workspace Log signal data [] Test point
~ [l MetionContralierxample Name Scope Port Resolve Signal DataType Size Initar Looging name.
@ Configuration (Active) Use signal name
& cade for MotionControllerExample seceliate toeal o couble
[EZ] simulink Design Verifier results secellnits - Local m} double o
(&) Aavice for MotionCentrolierExample decellerk Local O double ata
~ decelRate Local O double
decltnits Local O double [Limit data points to last | 5000
> B DriveMogel direction Local [m] double [Decimation 1
> B contrater JerkUrits Local O double
B pummLogger merge Local O double
fa psk mergeSpeed Local O Gouble
fa mso
for vam position Local m} double
profile Local O double
speed Local O doule
speedUnits Local O double
s Local O Bus: AXIS_SERVO_DRIVE
MI_MaM Local O Bus: MOTION_INSTRUCTION
ML_MSO Local] Bus: MOTION_INSTRUCTION
MI_MSF Local O Bus: MOTION_INSTRUCTION
5 orieviodel
5 controlier
(= bummyLogger
ey MsF
fex Mso
fea MAM
8 2 Revert Help
Contents Search Resuts

Apply

At the end of simulation, the logged signals are captured in the base workspace as a
variable called Logsout. This can be imported into Simulation Data Inspector.

1-38

Simulation and Code Generation of Motion Instructions

4\ Simulation Data Inspector - untitled” - m} e
DATA INSPECTOR
L s
g;: j/ Ln:‘p]: €1 Preferences % Cj). s | @ I:_:I %
= Delete | < [£7 [Ty] DataCursors Highight =~ Subplols Clear Subplot Legend Saved Views
H save ~ = Report - - in Model - - - -
FILE | RUNS | 200M & PAN | MEASURE & TRAGE | VIEWS | =
Q B W Axis.velocity ® MI_MAMACCEL
Inspect Compare
— 10
4
Axis.MAMData mergeSpeed — 0
o Axis.velocity —
(R
MI_MAM.EN e |
MI_MAM.DN —
MI_MAM ER —
MI_MAM.IP
MI_MAM.PC — c
b MI_MAM ACCEL —
MI_MAM DECEL —
5
Name Auxis. position
Line 4
Units
Data Type double 2
Sample Time
Model MotionControllerExa. ..
Block Name Chart :
Block Path MotionControllerExa. ..
Port J r
Dimensions 1
Channel o+ —
Run Run 1: Imported_Data
S 0 5 10 15 20 25 30 35 40 45 50 55 80 85 0 5 80 85 90 95 100

Structured Text Code Generation
Use the plcgeneratemotionapicode function to prepare the model for code
generation and generate structured text code. The plcgeneratemotionapicode takes

the full path name of subsystem containing the original chart as an input and creates a
new model from which structured text code can be generated.

Adding Support for Other Motion Instructions

The plcdemo _motion api rockwell example has support for only the following
motion instructions:

1-39

1 Getting Started

1-40

MAM
MAS
MSF
MSO

To use other Rockwell Automation RSLogix motion instructions in the model (For
example, Motion Axis Jog (MAJ)), you must perform the following steps:

1

Because the MAJ instruction is similar to MAM instruction, create a bus for MAJ with
elements similar to that of MAM.

B W e g B s ore e e

& 8 K e mas

Update the MotionTypesForSim.mat file with the new definitions for MAJDATA and
AXIS SERVO DRIVE.

In the Stateflow chart, create a graphical function representing MAJ (similar to MAM).
Assign the appropriate inputs and outputs.

function [AxisTagOut,MITagOut] = MAM(AxisTag,MITag,directionin, positionin, speedin, speedUnitsin, ...

accelRateln, accelUnitsIn, ...
decelRateln, decelUnitsln, ...
profileln, accelJerkin, decelJerkin, jerkUnitsin, ...
mergeln, mergeSpeedin, ...

lockPositionIn, lockDirectionin, ..
eventDistanceln, calculatedDataln)

4

Create single transition with commands to set the output values.

Simulation and Code Generation of Motion Instructions

function [AxisTagOut,MITagOut] = MAM(AxisTag,MITag,directionIn, positionin, speedin, speedUnitsIn, ...
accelRateln, accelUnitsIn, ...
decelRateln, decelUnitsin, ...
profileln, accelJerkln, decelJerkin, jerkUnitsln, ...
mergeln, mergeSpeedin, ...
lockPositionln, lockDirectionln, ...
eventDistanceln, calculatedDataln)

{

AxisTagOut = AxisTag;

MITagOut = MITag;

AxisTagOut.currentinstruction = MotionInstructionType.isMAM,;
AxisTagOut. MAMData.direction = directionIn;
AxisTagOut. MAMData.position = positionin;

AxisTagOut. MAMData.speed = speedin;

AxisTagOut. MAMData.speedUnits = speedUnitsIn;
AxisTagOut.MAMData.accelRate = accelRateln;
AxisTagOut.MAMData.accelUnits = accelUnitsIn;
AxisTagOut. MAMData.decelRate = decelRateln;
AxisTagOut.MAMData.decelUnits = decelUnits|n;
AxisTagOut. MAMData.profile = profileln;

AxisTagOut. MAMData.accelJerk = accelJerkln;
AxisTagOut.MAMData.decelJerk = decelJerkIn;
AxisTagOut. MAMData jerkUnits = jerkUnitsIn;
AxisTagOut.MAMData.merge = mergeln;

AxisTagOut. MAMData.mergeSpeed = mergeSpeedin;
AxisTagOut. MAMData.lockPosition = lockPosition|n;
AxisTagOut.MAMData.lockDirection = lockDirectionin;
AxisTagOut. MAMData.eventDistance = eventDistanceln;
AxisTagOut. MAMData.calculatedData = calculatedDataln;
MITagOut.EN = true;

MITagOut.IP = false;

MITagOut.DN = false;

}

5 Remove the transition commands and copy the graphical function to the
MotionApiStubs.slx.

1-41

1 Getting Started

MotionApistubs

@® Hide/Show Explorer Bar

‘@ zoom
E3 Fit to view

O state

‘O Junction

"\ Default transition
[Box

(%) simuiink state
*& simulink function
[#] Graphical function
€\ MATLAB function
Truth table

() History

[23 Annotation

(& 1mage

6

1-42

[P&] Motionapistubs b G Motionapistubs b

Tunction MSF-(Axis Tag MotioninstructionTag)

Tunction_MSO{AXis Tag, Motioninstruction Tag)

function

MAN(AxisTag,MotioninstructionTag, direction, position, speed, speedUnits, accelRate, accelUnits, decelRate, decelUnits, profile, accelJerk, decelJerk, jerkUnits, merge, mergeSpeed,

lockPosition, lockDirection, eventDistance, calculatedData)

Update the functionName variable in the getDriveTemplateNames.m file to

include MAJ.

Simulation and Code Generation of Motion Instructions

B4 Editor - YA1M\amathewi.ladderF B\plcdemo_motion_api_rockwell\getDriveTemplateMames.m

| getDriveTemplateNames.m | + |

11
12
13
14
15
16
17
18
19
20
21
22
83
24
B
Ze
27
28
29
30
31
£
33
34
35

%
%
%
%
%
%
%
%
%
%
%
%
%
%

2

[=T]

T
ol

delete them before ST generation. However, these are req . N
simulation

functionNames : names of the motion api function calls. '
motion api calls are needed for simulation and also need
appear in the 5T code. However,
a) these should appear as function calls just as
represented in the controller. They should not get
b) the definition should not get generated. So we
to the plc options symbols that are to not to be g

globalDataNames : names of the motionAPI global data s
which behind hte scenes are used to updated the status o
instruction calls both in the controller and the drive. '
data store memories in the stateflow chart. The type
definition for these should not be generated in the ST a
will be provided by RSLogix. So we add these to the plc
symbols that are to not to be generated.

driveNames = {'Drivel', 'Drive2', 'DriveModel'};
dummvStateNames = {'Dupmviogaer'l:

functionNames = {"M3SF', 'M3S0', 'M&M'};

- end

globalDataNames = { AXTS SERVO DRIVE", "MOTION INSTRUCTICN', 'l

Update the DrivelLibrary.slx file to respond to MAJ calls during simulation.

* Create 1sMAJ graphical function (similar to i sMAM).

1-43

1 Getting Started

1-44

DriveModel

® Hide/Show Explorer Bar

@& zoom
E3 i toview

O state

0. unction

"W Default transition
O Box

() simulink state
*& Simulink function
Graphical function
) MATLAB function
[l Truth table

@ History

[Annotation

& 1mage

[Pal orivetibrary » G Drivetodel b

&

Tanclionyes = ISMSO(MI)

MSO)

l {yes= &8

Tanction yes = 1sMSF (M)

MSF)}

g yos=

Tanction yes = SMAM(VI)

MAM))

Update the Drive subchart to respond to MAJ by implementing required

transitions etc (similar to MAM as shown).

Tanclion MIOU = mark_done(Mi)

{
Miout = M

funclion yes = isEnabled(MI)

g {yes = (MLEN 8& IMLDN))

Simulation and Code Generation of Motion Instructions

8

Off

[isMSO(MI_MSO)]
{MI_MSO = mark_ip(MI_MSO});}

‘ {MI_MSF = mark_done(MI_MSF);}

MSO_Wait J

MSF_Wait J

{MI_MSO = mark_done(MI_MSO);}

[iSMSF(MI_MSF)]
{MI_MSF = mark_ip(MI_MSF);}

(On
[isMAM(MI_MAM)]
{MI_MAM = mark_ip(MI_MAM);} /Mt)ving
Stopped | en: trajectory = ml. Trajectory(Axis.position,...
Axis.MAMData.position,...
Axis.MAMData.speed,...
Axis.MAMData.accelRate, ...
Axis.MAMData.decelRate);
tStart = t;
du:
[Axis.position,Axis.velocity,...
MI_MAM.ACCEL,MI_MAM.DECEL] = ...
[abs(Axis.position-Axis.MAMData.position)<0.01] ml.getPestionAndvelocity (trajecton, (ttstart))
{
MI_MAM = mark_done(MI_MAM);
4 \.
.

Create or update the controller logic as required. Create a new state and add MAJ

instruction to it (similar to the MAM)

1-45

1 Getting Started

MotionControllerExample b

MotionController b F&Chart » %mntml\erl

trollert

Start
Begn entry:
MI_MSO1.DN = false;
[Axis1,MI_MSO1] = MSO(Axis1,MI_MSQ1);

(MI_MSO1.DN]

Stop

entry:

MI_MSF1.DN=false; [MI_[flAM1.DN]
[Axis1,MI_MSF 1] = MSF(Axis1,MI_MSF1);

merge=0;
mergeSpeed=0;

eventDistance=0;

calculatedData=0);

MI_MAM1.DN = false;

[Axis 1, MI_MAM1] = MAM{Axis1,M_MAM?1 direction,..
position, speed, speedUnits, accelRate,...
accelUnits, decelRate, decelUnits,
profile, accelJerk, decelJerk,

Bone jerkUnits, merge, mergeSpeed, ..

lockPosition, lockDirection, ...

eventDistance, calculatedData);

[MI_MSF1.DN]

9 Perform simulation and generate code using the steps described earlier.

1-46

Mapping Simulink Semantics to
Structured Text

* “Generated Code Structure for Simple Simulink Subsystems” on page 2-2
* “Generated Code Structure for Reusable Subsystems” on page 2-4

* “Generated Code Structure for Triggered Subsystems” on page 2-7

* “Generated Code Structure for Stateflow Charts” on page 2-9

* “Generated Code Structure for MATLAB Function Block” on page 2-14

* “Generated Code Structure for Multirate Models” on page 2-16

* “Generated Code Structure for Subsystem Mask Parameters” on page 2-18
* “Global Tunable Parameter Initialization for PC WORX” on page 2-23

* “Considerations for Non-Intrinsic Math Functions” on page 2-24

2 Mapping Simulink Semantics to Structured Text

Generated Code Structure for Simple Simulink
Subsystems

2-2

This topic assumes that you have generated Structured Text code from a Simulink model.
If you have not yet done so, see “Generate Structured Text from the Model Window” on
page 1-17.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE.
Generated code for other IDE platforms looks different.

1 Ifyou do not have the plcdemo simple subsystem.exp file open, open it in the
MATLAB editor. In the folder that contains the file, type:

edit plcdemo_simple subsystem.exp
A file like the following is displayed.

The following figure illustrates the mapping of the generated code to Structured Text
components for a simple Simulink subsystem. The Simulink subsystem corresponds
to the Structured Text function block, Subsystem.

Note The coder maps alias data types to the base data type in the generated code.

Generated Code Structure for Simple Simulink Subsystems

Input parameter for Atomic subsystem name Subsystem
subsystem method
type CTION_BLOCK SimpleSubsystem

17 VAR T

1 T ssMethodTypSINT; C;}—’*) 4’

19 U: LREAL; in
.Su bsyste(rjn / END_VAR =
InpUtS an 21 VAR_OUTPUT 5

T ¥: LREAL: A L

OUtpUtS 23 END_VAR z

24 VAR

SUbSyStem —_— 25, UnitDelay DSTATE: LREAL;
26 END VAR

State (DWork) = =pw

variables -

rtb_Gain: LREAL;
END_VAR
CASE ssMethodType OF

SS_INITIALIZE:

(* InitializeConditions for UnitDelay:
UnitDelay_ DSTATE := 0;
S5S5_STEP:

(* Gain: '<S1>/Gain' incorporates:

* Inport: '<Root>/U'

* Sum: '<51>/Sum'

* UnitDelay: '<S1>/Unit Delay' *)
rtb_Gain := (U - UnitDelay DSTATE) * 0.5;

Initialize and %
step methods

(* Outport: '<Root>/Y' ¥)

4 Y := rtb_Gain;

(* Update for UnitDelay;/”'<S1>/Unit Delay' *)

47 UnitDelay_ DSTATE := _Gain;
Inlined
parameters

2

'<51>/Unit Delay'

*)

Inspect this code as you ordinarily do for PLC code. Check the generated code.

Note The Simulink model for plcdemo simple subsystem does not contain signal
names at the input or output of the SimpleSubsystem block. So the generated code has
the port names U and Y as the input and output variable names of the FUNCTION BLOCK.
However, even if your model does contain signal names, coder only uses port names in

the generated code.

2-3

2 Mapping Simulink Semantics to Structured Text

Generated Code Structure for Reusable Subsystems

2-4

This topic assumes that you have generated Structured Text code from a Simulink model.
If you have not yet done so, see “Generate Structured Text from the Model Window” on
page 1-17.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE.
Generated code for other IDE platforms looks different.

Open the plcdemo _reusable subsystem model.

2 Right-click the Subsystem block and select PLC Code > Generate Code for
Subsystem.

The Simulink PLC Coder software generates Structured Text code and places it in
current folder/plcsrc/plcdemo reusable subsystem.exp.

3 Ifyou do not have the plcdemo reusable subsystem.exp file open, open it in the
MATLAB editor.

The following figure illustrates the mapping of the generated code to Structured Text
components for a reusable Simulink subsystem. This graphic contains a copy of the
hierarchical subsystem, ReusableSubsystem. This subsystem contains two identical
subsystems, S1 and S2. This configuration enables code reuse between the two
instances (look for the ReusableSubsystem string in the code).

matlab:plcdemo_reusable_subsystem

Generated Code Structure for Reusable Subsystems

Oy (D
U1 Y1
$1
CASE ssMethodType OF
55_INITIALIZE:
i0_51 (ssMethodType
O Y
uz Y2
il 51 (ssMethodType
$2 =
VAR 55_STEP:
i0_S1: S1;
il _S1: S1:
END VAR ¥1 := i0 51.Y¥;

Instance variables

Reused code in
FUNCTION_BLOCK

(* End of SystemInitialize for SubSystem:
(* Outputs for Atomic SubSystem:
10_51 (ssMethodType :
(* End of Outputs

(* Outputs for Atomic S
il 51 (ssMethodType :=

¥2 ;= i1 51.%;
Instance invocations (call sites) /

(* End of Outputs for §

END CASE;

END_FUNCTION_BLOCK
FUNCTION BLOCK S1

> VAR INPUT
ssMethedType:
U: LREAL;
END_VAR
VAR _OUTPUT
¥: LREAL;
END VAR

(* SystemInitialize for Atomic SubSystem:
t= 58 INITIALIZE,

(* End of SystemInitialize for SubSystem:

(* SystemInitialize for Atomic SubSystem:
$= 55 INITIALIZE, U

'<51>/81" *)

1= Ul);

'<51>/81"* *)

'<81>/52")

= 02);

'<51>/52" *)

"o

Y

20 =)

4 Examine the generated Structured Text code. The code defines FUNCTION BLOCK S1

once.

Look for two instance variables that correspond to the two instances declared inside
the parent FUNCTION BLOCK ReusableSubsystem (i@ S1: Sland il S1: S1).
The code invokes these two instances separately by passing in different inputs. The

code invokes the outputs per the Simulink execution semantics.

5 ForIEC 61131-3 compatible targets, the non-step and the output ssMethodType do
not use the output variables of the FUNCTION BLOCK. Therefore, the generated
Structured Text code for SS_INITIALIZE does not contain assignment statements
for the outputs Y1 and Y2.

2-5

2 Mapping Simulink Semantics to Structured Text

Note This optimization is applicable only to IEC 61131-3 compatible targets.

2-6

Generated Code Structure for Triggered Subsystems

Generated Code Structure for Triggered Subsystems

This topic assumes that you have generated Structured Text code from a Simulink model.
If you have not yet done so, see “Generate Structured Text from the Model Window” on
page 1-17.

The example in this topic shows generated code for the CoDeSys Version 2.3 PLC IDE.
Generated code for other IDE platforms looks different.

Open the plcdemo cruise control model.

2 Right-click the Controller subsystem block and select PLC Code > Generate Code
for Subsystem.

The Simulink PLC Coder software generates Structured Text code and places it in
current_folder/plcsrc/plcdemo _cruise control.exp.

3 Ifyou do not have the plcdemo _cruise control.exp file open, open it in the
MATLAB editor.

The following figure illustrates the mapping of the generated code to Structured Text
components for a triggered Simulink subsystem. The first part of the figure shows the
Controller subsystem and the triggered Stateflow chart that it contains. The second
part of the figure shows excerpts of the generated code. Notice the zero-crossing
functions that implement the triggered subsystem semantics.

Subsystem

Increment
Decrement
Set
Resume
Power
brake ratio
accl

[curr_speed

Target Speed |-

Throt_cmd (%) |-

Controller

Triggered Stateflow Chart

h 4
/ i
pwr
brake Iﬂ]

target_speed
curr_speed

active

\

Enable / Setpoint

2-7

matlab:plcdemo_cruise_control

2 Mapping Simulink Semantics to Structured Text

EnableSetpoint_Trig_ZCE: ARRAY [0..6] OF USINT

Generated code

= 3,3,3,3,3,3,3;

i0_ZCFCN_d_ANY: ZCFCN_d_ANY:

END_VAR

SS_STEP:

(* DiscretePulseGenerator: '<S1>/Pulse Generator' *)
IF (clockTickCounter < 1) AND (clockTickCounter >= 0) THEN
templ := 1.0;

ELSE
templ := 0.0;
END_IF;
rtb_PulseGenerator templ;
IF clockTickCounter >= 1 THEN
clockTickCounter := 0;
ELSE
clockTickCounter := clockTickCounter + 1;
END_IF;

(* End of DiscretePulseGenerator: '<S1>/Pulse Generator' *)

(* Chart: '<S1>/Enable // Setpoint ' incorporates:
* TriggerPort: '<52>/ input events ' *)
tempInputSignal[0] := rtb_PulseGenerator;

(* Inport: '<Root>/Increment' *)
tempInputSignal[l] Increment;
tempInputSignal[2] Increment;

(* Inport: '<Root>/Decrement' *)
tempInputSignal[3] Decrement;
tempInputSignal[4] Decrement;

(* Inport: '<Root>/Set' *)

tempInputSignal[S] := Set;
(* Inport: '<Root>/Resume’ *)
tempInputSignal[6] := Resume;

(* Chart: '<S1>/Enable // Setpoint ' incorporati
* TriggerPort: '<S2>/ input events ' *)
FOR inputEventIndex := 0 TO 6 DO

i0_ZCFCN_d_ANY(u0 := EnableSetpoint_p£ig ZCE[inputEventIndex],
callChartStep := i0_ZCFCN_d_ANY.y

tmp := i0_ZCFCN_d_ANY.yl;

tempOutEvent [inputEventIndex)/:= callChartStep;

outState [inputEventIndex]

FUNCTION BLOCK ZCFCN_d_ANY

END_FUNCTION_BLOCK

2-8

Triggered subsystem semantics

Generated Code Structure for Stateflow Charts

Generated Code Structure for Stateflow Charts

The examples in this topic show generated code for the CoDeSys Version 2.3 PLC IDE.
Generated code for other IDE platforms looks different.

Stateflow Chart with Event Based Transitions

Generate code for the Stateflow chart ControlModule in the model
plcdemo stateflow controller. Here is the chart:

2-9

matlab:plcdemo_stateflow_controller

2 Mapping Simulink Semantics to Structured Text

Running
d==cSTA
(emd==CSTARTY o t=sRUNNING} 4

start_drive(),

out = sIDLE;
start_driv e();

2 [

[tis_fault()]

[cmd==cHOLD

Halding
out=sHOLDING
start_drive();

I[cmd::cHOLDj {

1 i

Restarting

N out=sRESTARTING %:md::ERESTﬂ.RT

2| start_drive();

Resetting
aut=sRESETTING;

after(20 tick)]

reset_drive(),

Complete
out=sCOMPLETH
start_drive(),

—
¢,
b

-
Mo

o

J [cmd==cSTOP || is_faut()] [cmd==cSTOP]

Aborting
out=s3TOPPING; | rcmd==cABORT] |out=sABORTING|
stop_driv e(); I————————"1stop_drive();

=

"" . . -
lis_activel)]

[lis_active()]

v
Stopped
out=sSTOPPED
stop_drive();

Aborted
out=sABORTELD;
stop_drive();

[cmd==cRESET] [cmd==cRESET]

.,

rd i
|- _J

function
result =is_active

function
result = is_fault

function start_drive

function stop_drive function reset_drive

You can map the states and transitions in the chart to the generated code. For instance,
the transition from the state Aborting to Aborted appears in the generated code as:

2-10

Generated Code Structure for Stateflow Charts

ControlModule IN Aborting:

rtb_out := sABORTING;

(* During 'Aborting': '<S1>:11"' *)

(* Graphical Function 'is active': '<S1>:73' *)

(* Transition: '<S1>:75' *)

IF NOT drive state.Active THEN
(* Transition: '<S1>:31' *)
is c2 ControlModule := ControlModule IN Aborted;
(* Entry 'Aborted': '<S1>:12' *)
rtb _out := sABORTED;
(* Graphical Function 'stop drive': '<S1>:88' *)
(* Transition: '<S1>:90' *)
driveOut.Start := FALSE;
driveQut.Stop := TRUE;
driveOut.Reset := FALSE;

END IF;

For more information on the inlining of functions such as start _drive, stop drive,
and reset drive in the generated code, see “Control Code Partitions for MATLAB

Functions in Stateflow Charts” on page 7-9.

Stateflow Chart with Absolute Time Temporal Logic

Generate code for the Stateflow chart Temporal in the model plcdemo_sf abs time.
Here is the chart:

2-11

matlab:plcdemo_stateflow_controller

2 Mapping Simulink Semantics to Structured Text

{pulse =0;}

A B
. — - after(3, sec
du: pulse = 1; [() = du: pulse = Z;

[after(4, sec)]

D C
du: pulse = 4; [before(2, sec) && (In1 ==1)] | du: pulse = 3;

You can map states and transitions in the chart to the generated code. For instance, the
transition from state B to C appears as:

Temporal IN B:
(* During 'B': '<S1>:2' *)
temporalCounter il(timerAction := 2, maxTime := 4000);
IF temporalCounter il.done THEN
(* Transition: '<S1>:8' *)
is c2 Temporal := Temporal IN C;
temporalCounter il(timerAction := 1, maxTime := 0);
ELSE
(* Outport: '<Root>/pulse' *)
pulse := 2.0;
END IF;

The variable temporalCounter il is an instance of the function block
PLC_CODER_TIMER defined as:

2-12

Generated Code Structure for Stateflow Charts

FUNCTION BLOCK PLC CODER TIMER
VAR _INPUT
timerAction: INT;
maxTime: DINT;
END VAR
VAR _OUTPUT
done: BOOL;
END VAR
VAR
plcTimer: TON;
plcTimerExpired: BOOL;
END VAR
CASE timerAction OF
1:
(* RESET *)
plcTimer (IN:=FALSE, PT:=T#0ms);
plcTimerExpired := FALSE;
done := FALSE;

(* AFTER *)
IF (NOT(plcTimerExpired)) THEN
plcTimer (IN:=TRUE, PT:=DINT TO TIME(maxTime));
END IF;
plcTimerExpired := plcTimer.Q;
done := plcTimerExpired;

(* BEFORE *)
IF (NOT(plcTimerExpired)) THEN
plcTimer (IN:=TRUE, PT:=DINT TO TIME(maxTime));
END IF;
plcTimerExpired := plcTimer.Q;
done := NOT(plcTimerExpired);
END CASE;
END FUNCTION BLOCK

2-13

2 Mapping Simulink Semantics to Structured Text

Generated Code Structure for MATLAB Function Block

2-14

This topic assumes that you have generated Structured Text code from a Simulink model.
If you have not yet done so, see “Generate Structured Text from the Model Window” on
page 1-17.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE.
Generated code for other IDE platforms looks different.

Open the plcdemo _eml tankcontrol model.

2 Right-click the TankControl block and select PLC Code > Generate Code for
Subsystem.

The Simulink PLC Coder software generates Structured Text code and places it in
current_folder/plcsrc/plcdemo_eml tankcontrol.exp.

3 Ifyou do not have the plcdemo _eml tankcontrol.exp file open, open it in the
MATLAB editor.

The following figure illustrates the mapping of the generated code to Structured Text
components for a Simulink Subsystem block that contains a MATLAB Function block.
The coder tries to perform inline optimization on the generated code for MATLAB
local functions. If the coder determines that it is more efficient to leave the local
function as is, it places the generated code in a Structured Text construct called
FUNCTION.

4 Examine the generated Structured Text code.

matlab:plcdemo_eml_tankcontrol

Generated Code Structure for MATLAB Function

#eml
% Check the vessel state
if (Height >= FullHeight)

% Is it full ?

elseif (Height <= EmptyHeight)
% Is it empty ?

else

end

function [InFlow, OutFlow, StirSpeed]

TankControl (Cc

vessel = PLCVesselState.FULL;

vessel = PLCVesselState.EMPTIED;

vessel = PLCVesselState.NOT_FULL;

MATLAB code

Generated code
for MATLAB
subfunctions

FUNCTION_BLOCK TankControl
VAR_INPUT
Command: PLCCommandState;
Height: LREAL;
END_VAR
VAR_OUTPUT
InFlow: LREAL;
OutFlow: LREAL;
StirSpeed: LREAL;
END_VAR
VAR
END_VAR
VAR_TEMP
vessel: PLCVesselState;
EmptyValve: PLCValveState;
FillValve: PLCValveState;
END_VAR
(* Check the vessel state ¥*)
IF Height >= 10.0 THEN
(* Is it full 2 *)
vessel := FULL:
ELSIF Height <= 2.0 THEN
(* Is it empty 2 *)
vessel := EMPTIED;
ELSE
vessel := NOT_FULL;
END_IF;
(* Process the command mode *)
CASE Command OF
FILL:
(* Fill Tank *)
EmptyValve := SHUT;
IF vessel = FULL THEN

FillValve := SHUT;
ELSE
FillValve := OPEN:
END_IF:
HOLD:

(* Hold Contents *)
EmptyValve := SHUT;

FillValve := SHUT;
EMPTY:

(* Empty Tank *)

FillValve SHUT;

IF vessel = EMPTIED THEN
EmptyValve := SHUT;

ELSE
EmptyValve := OPEN;
END_IF;
ELSE
EmptyValve := SHUT;
FillValve := SHUT;
END_CASE;

(* compute inflow and outflow *)

2 Mapping Simulink Semantics to Structured Text

Generated Code Structure for Multirate Models

2-16

This example assumes that you have generated Structured Text code from a Simulink
model. If you have not yet done so, see “Generate Structured Text from the Model
Window” on page 1-17.

The example in this topic shows generated code for the CoDeSys Version 2.3 IDE.
Generated code for other IDE platforms looks different.

Open the plcdemo _multirate model. This model has two sample rates.

Right-click the SimpleSubsystem block and select PLC Code > Generate Code for
Subsystem.

The Simulink PLC Coder software generates Structured Text code and places it in
current folder/plcsrc/plcdemo multirate.exp.

3 If you do not have the plcdemo multirate.exp file open, open it in the MATLAB
editor and examine the Structured Text code.

The generated code contains a global time step counter variable:

VAR GLOBAL
plc ts counterl: DINT;
END VAR

In this example, there are two rates, and the fast rate is twice as fast as the slow rate,
so the time step counter counts to 1, then resets:

IF plc ts counterl >= 1 THEN

plc_ts counterl := 0;
ELSE

plc_ts counterl := plc_ts counterl + 1;
END IF;

The generated code for blocks running at slower rates executes conditionally based
on the corresponding time step counter values. In this example, the generated code
for Gainl, Unit Delayl, and Suml executes every other time step, when

plc_ts counterl = 0, because those blocks run at the slow rate. The generated
code for Gain, Unit Delay, Sum, and Sum2 executes every time step because those
blocks run at the fast rate.

SS_STEP:

matlab:plcdemo_multirate

Generated Code Structure for Multirate Models

(* Gain: '<S1>/Gain' incorporates:

* TInport: '<Root>/U1'

* Sum: '<S1>/Sum'

* UnitDelay: '<S1>/Unit Delay' *)

rtb Gain := (Ul - UnitDelay DSTATE) * 0.5;

(* Outport: '<Root>/Y1l' *)
Y1 := rtb _Gain;
IF plc_ts counterl = 0O THEN

(* UnitDelay: '<S1>/Unit Delayl' *)
UnitDelayl := UnitDelayl DSTATE;

(* Gain: '<S1>/Gainl' incorporates:

* Inport: '<Root>/U2'

* Sum: '<S1>/Suml' *)

rtb Gainl := (U2 - UnitDelayl) * 0.5;

(* Outport: '<Root>/Y2' *)
Y2 := rtb _Gainl;
END_IF;
(* Outport: '<Root>/Y3' incorporates:
* Sum: '<S1>/Sum2'
* UnitDelay: '<S1>/Unit Delay' *)
Y3 := UnitDelay DSTATE - UnitDelayl;

(* Update for UnitDelay: '<S1>/Unit Delay' *)
UnitDelay DSTATE := rtb Gain;

IF plc_ts counterl = 0 THEN

(* Update for UnitDelay: '<S1>/Unit Delayl' *)
UnitDelayl DSTATE := rtb Gainl;

END_IF;

In general, for a subsystem with n different sample times, the generated code has n-1
time step counter variables, corresponding to the n-1 slower rates. Code generated from
parts of the model running at the slower rates executes conditionally, based on the
corresponding time step counter values.

2-17

2 Mapping Simulink Semantics to Structured Text

Generated Code Structure for Subsystem Mask
Parameters
In the generated code for masked subsystems, the mask parameters map to function

block inputs. The values you specify in the subsystem mask are assigned to these function
block inputs in the generated code.

For example, the following subsystem, Subsystem, contains two instances, Filt1 and
Filt2, of the same masked subsystem.

[P&|m_masked_params » -
ﬁ double
bookean
Sine Wave | @I 1)
0 doublg Cuti

-————— In1

double
» In2 Out1
In3
——# Ind
doubl double
ﬂ., oubie — B In5 out2

bookean

Sine Wave1 | BI= ’—""5 »(2)

double
L]

2-18

Generated Code Structure for Subsystem Mask Parameters

Em_maskedjarams P [Pz |Subsystem -

1} - Input
In 2 } P | nitF Cut 1 J

In2 Out1
(3} » RtV

In3

(4} - Input
lE 5} - [nitF Qut e 2)

Inf Out2
(6 } > RtV

InG

The two subsystems, Filt1, and Filt2, have different values assigned to their mask
parameters. In this example, Filtl Order Thau is a constant with a value of 5.

2-19

2 Mapping Simulink Semantics to Structured Text

i

{mask) (link)

Parameters

Filtl_Order _Enable

Function Block Parameters: Filtl @

Filtl_Order_Enable

Filtl_Order_Thau
Filtl_Order_Thau + 3

Thitialvalue

]

ok H Cancel H Help applhy

2-20

Generated Code Structure for Subsystem Mask Parameters

-

Function Elock Parameters: Filt2 @
{mask) (link)

Parameters

Filtl_Order _Enable

Filtl_Order_Enab Ie|

Filtl_Order_Thau
Filtl_Order_Thau

Thitialvalue

4

ok]| Cancel || Help applhy

Therefore, for the Filtl subsystem, the Filtl Order Thau parameter has a value of 8,
and for the Filt2 subsystem, the Filtl Order Thau parameter has a value of 5.

The following generated code shows the Filt1 function block inputs. The
rtp Filtl Order Thau input was generated for the Filtl Order Thau mask
parameter.

FUNCTION BLOCK Filtl
VAR INPUT
ssMethodType: SINT;
InitV: LREAL;
InitF: BOOL;
Input: LREAL;
rtp Filtl Order Thau: LREAL;
rtp InitialValue: LREAL;
rtp Filtl Order Enable: BOOL;
END VAR

The following generated code is from the FUNCTION BLOCK Subsystem. The function
block assigns a value of 8 to the rtp Filtl Order Thau input for the 10 Filtl

2-21

2 Mapping Simulink Semantics to Structured Text

instance, and assigns a value of 5 to the rtp Filtl Order Thau input for the
il Filtl instance.

SS INITIALIZE:
(* InitializeConditions for Atomic SubSystem: '<S1>/Filtl' *)

i0 Filtl(ssMethodType := SS INITIALIZE, InitV := In3,
InitF := In2, Input := Inl,
rtp Filtl Order Thau := 8.0,
rtp_InitialValue := 0.0,
rtp Filtl Order Enable := TRUE);

Outl := 10 Filtl.Out;

(* End of InitializeConditions for SubSystem: '<S1>/Filtl' *)

(* InitializeConditions for Atomic SubSystem: '<S1>/Filt2' *)
il Filtl(ssMethodType := SS_INITIALIZE, InitV := In6,

InitF := In5, Input := In4,

rtp Filtl Order Thau := 5.0,

rtp_InitialValue := 4.0,

rtp Filtl Order Enable := TRUE);
Out2 := il Filtl.0ut;

(* End of InitializeConditions for SubSystem: '<S1>/Filt2' *)
SS_STEP:
(* Outputs for Atomic SubSystem: '<S1>/Filtl' *)

i0 Filtl(ssMethodType := SS OUTPUT, InitV := In3, InitF := In2,
Input := Inl, rtp Filtl Order_Thau := 8.0,
rtp_InitialValue := 0.0,
rtp Filtl Order Enable := TRUE);

Outl := 10 Filtl.Out;

(* End of Outputs for SubSystem: '<S1>/Filtl' *)

(* Outputs for Atomic SubSystem: '<S1>/Filt2' *)

il Filtl(ssMethodType := SS OUTPUT, InitV := In6, InitF := In5,
Input := In4, rtp Filtl Order_Thau := 5.0,
rtp_InitialValue := 4.0,
rtp Filtl Order Enable := TRUE);

Out2 := il Filtl.0ut;

(* End of Outputs for SubSystem: '<S1>/Filt2' *)

2-22

Global Tunable Parameter Initialization for PC WORX

Global Tunable Parameter Initialization for PC WORX

For PC WORX, the coder generates an initialization function, PLC_INIT PARAMETERS, to
initialize global tunable parameters that are arrays and structures. This initialization
function is called in the top-level initialization method.

For example, suppose that your model has a global array variable, ParArrayXLUT:
ParArrayXLUT=[0,2,6,10];

In the generated code, the PLC_INIT PARAMETERS function contains the following code
to initialize ParArrayXLUT:

(* parameter initialization function starts *)

ParArrayXLUT[O] := LREAL#0.0;

ParArrayXLUT[1] := LREAL#2.0;

ParArrayXLUT[2] := LREAL#6.0;

ParArrayXLUT[3] := LREAL#10.0;

(* parameter initialization function ends *)
</div></html>

The PLC_INIT PARAMETERS function is renamed i@ PLC INIT PARAMETERS, and
called in the top-level initialization method:

CASE SINT TO INT(ssMethodType) OF

0:

i®@ PLC INIT PARAMETERS();

2-23

2 Mapping Simulink Semantics to Structured Text

Considerations for Non-Intrinsic Math Functions

2-24

When Simulink PLC Coder encounters a math function that is not intrinsic, it generates
Structured Text by replacing the non-intrinsic function with an equivalent IEC-61131
compatible intrinsic function. For such cases, an input value that is larger than the
allowed input range, causes overflow and generates a NaN value.

For example, hyperbolic tan is not an intrinsic function. Simulink PLC Coder uses exp in
the generated code to represent tanh. More specifically, it uses (exp(2*x)-1)/(exp(2*x)+1).
For large values of x, this function overflows. The issue can be addressed by adding
validation code or using blocks before calling the tanh function to check that the range of
the input is within acceptable values. In MATLAB, tanh(x) for x>19 is 1.0000. So if x>19,
return a value of 1.0000.

See Also

Generating Ladder Diagram

3 Generating Ladder Diagram

Ladder Diagram Generation for PLC Controllers

3-2

Ladder Diagram (LD) is a graphical programming language used to develop software for
programmable logic controllers (PLCs). It is one of the languages that the IEC 61131
Standard specifies for use with PLCs.

A program in Ladder Diagram notation is a circuit diagram that emulates circuits of relay
logic hardware. The underlying program uses Boolean expressions that translate readily
to switches and relays. When you program complex applications directly in Ladder
Diagram notation, it is challenging because you must write the programs with only
Boolean variables and expressions.

Using Simulink PLC Coder, you can generate Ladder Diagram code for your applications
from a Stateflow chart. The benefits are:

* You can design your application by using states and transitions in a Stateflow chart.
Once you complete the design, you can generate Ladder Diagram code in XML or
another format. You then import the generated code to an IDE such as CODESYS 3.5
or RSLogix AOI 5000 and view the Ladder Diagram.

* When you test your Stateflow chart by using a set of inputs, you can reuse these inputs
to create a test bench for the Ladder Diagram code. You import the test bench to your
PLC IDE and compare the results of simulation with the results of running the Ladder
Diagram. If the results agree, the original Stateflow chart is equivalent to the
generated Ladder Diagram code.

The figure shows a simple Stateflow chart with three states and two transitions. Based on
the transition conditions, the chart transitions from one state to another.

Ladder Diagram Generation for PLC Controllers

. e

State1 ‘ State?

[transitionCondition1]

1

M3

[transitionCondition2]

State3 ‘

The state Statel is active as

long transitionConditionl and transitionCondition?2 are not true. This means,
Statel is active in one of these two cases:

* The chart has started execution through the default transition.

* The previous active state is also Statel and the
conditions transitionConditionl and transitionCondition?2 are false.

State3 is active in one of these two cases:

» The previous active state is Statel, transitionConditionl is false, and
transitionCondition2 is true.

* The previous active state is also State3. State3 is a terminating state.

You can import the generated Ladder Diagram code to CODESYS 3.5 and view the
diagram. A portion of the Ladder Diagram is shown.

3-3

Generating Ladder Diagram

Statel trangiticnConditiconl

Il L

transiticnConditicons

Jtatel new

gtateflow_init
T

Ll

UL

L0

Statel transitionConditionz transitionConditionl Stated new
I I
UL UL ﬂ!ﬂ” ﬂ:m

State3
I
UL

Jtatel new Jtatel

(!
L[] ﬂ:m

3-4

In the preceding Ladder Diagram, each rung of the ladder ends in a coil. The coil
corresponds to a state of the original chart. The contacts before the coil determine if the
coil receives power. You can compare the Ladder Diagram visually with the Stateflow
chart. For instance, the coil Statel new receives power in one of these two cases:

* The normally open contact Statel is closed and the normally closed contacts

transitionConditionl and transitionCondition2 are open.

* The normally open contact stateflow init is closed. This contact corresponds to

the default transition.

Once the coil Statel new receives power, the contact Statel new further down in the

ladder is then closed and the coil Statel receives power.

The Ladder Diagram executes from top to bottom and from left to right.

Ladder Diagram Generation Workflow

1 Before generating Ladder Diagram code from your Stateflow chart, confirm that your
chart is ready for code generation.

See “Prepare Chart for Ladder Diagram Generation” on page 3-6.

Ladder Diagram Generation for PLC Controllers

Generate Ladder Diagram code from the Stateflow chart. The code is in a format
suitable for import to an IDE.

Generate a test bench along with the code. The test bench is in the Structured Text
language. You can later import the code along with the test bench to your IDE. The
test bench invokes the Ladder Diagram code and compares the output against the
expected outputs from the original Stateflow chart.

See “Generate Ladder Diagram Code from Stateflow Chart” on page 3-10.

Import the generated Ladder Diagram code to your CODESYS 3.5 IDE. Validate the
diagram in the IDE by using the generated test bench.

See “Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram” on
page 3-15.

3 Generating Ladder Diagram

Prepare Chart for Ladder Diagram Generation

This example shows how to prepare your Stateflow chart for Ladder Diagram code

generation. Once your chart is ready, you can generate Ladder Diagram code from the
chart.

For the complete Ladder Diagram code generation workflow, see “Ladder Diagram

Generation Workflow” on page 3-4.

Design PLC Application with Stateflow

Use Stateflow to design state machines that model PLC controllers. Your Stateflow chart
must have these properties:

The inputs and outputs to the chart must be Boolean. They correspond to the input
and output terminals of your PLC.

Each state in the chart must correspond to an output. The output is true if the state is

active.

To ensure that each state in the chart is mapped to an output, in the Properties dialog

box of each state, select Create output for monitoring. Then, select Self

activity.

Fault

e

State Fault

=x=)

General | Documentation |

MName: Fault

State Output

m

Create output for monitoring: [Self activity

Data name:

Fault

7)

OK

][Cancel H

Help

)

Apply

3-6

The transition conditions must involve only Boolean operations such as ~, &, and |

between the inputs.

Prepare Chart for Ladder Diagram Generation

For instance, in the following chart, transitionConditionl, and
transitionCondition2 are Boolean inputs to the model. Statel, State2, and
State3 correspond to Boolean outputs from the model.

State1 1

State?

[transitionCondition1]

1

[transitionCondition2]

State3

Some advanced Stateflow features on page 3-19 are not supported because of inherent
restrictions in Ladder Diagram semantics. You can use the function plccheckforladder
to check if the chart has the required properties. You can also use the function
plcprepareforladder to change certain chart properties so that the chart is ready for
Ladder Diagram code generation.

You can start generating Ladder Diagram code from the chart. See the example in
“Generate Ladder Diagram Code from Stateflow Chart” on page 3-10.

Create Test Harness for Chart

If you want to generate a test bench for validation of the Ladder Diagram code, create a
test harness for the Stateflow chart. The test harness can consist of multiple test cases.

3-7

3 Generating Ladder Diagram

Using the test harness, Simulink PLC Coder can generate test benches for validation of
the Ladder Diagram code.

You can manually create a test harness by using the Signal Builder block or autogenerate
a test harness by using Simulink Design Verifier™. To autogenerate the test harness:

1 Right-click the chart or a subsystem containing the chart. Select Design Verifier >
Generate Tests for Subsystem.

2 After test creation, select Create harness model.

The harness model is created. The model consists of the original subsystem coupled with

inputs from a Signal Builder block. The block consists of multiple test cases, so that the
states and transitions in your model are covered at least once.

Size-Type —»(D
Test Case 1_ y - N State1 State1
transitionCondition1 transitionCondition1
L State2 ()
ransitionCondition2 transitionCondition2 gtate3 State2
Inputs Test Unit (copied from Chart0) —
State3

You can also create tests by using other blocks from the Simulink library. However, you
must ensure that the inputs to the chart are Boolean.

3-8

Prepare Chart for Ladder Diagram Generation

T — D
State1
Pulse Compare
State1
Generator To Zero p{transitionCondition1
State2 D
! transitionCondition2 State2
State3
Subsystem
JUL[—>>0 @
State3
Pulse Compare

Generator1 To Zero1

You can now generate Ladder Diagram code from the chart and validate the diagram.

To generate Ladder Diagram code only, use the original Stateflow chart.

To generate Ladder Diagram code with test bench, use the Stateflow chart coupled
with the Boolean inputs from the test cases. For instance, if you create a harness
model with Simulink Design Verifier, use the harness model for the Ladder Diagram
code and test bench generation instead of the original chart.

See “Generate Ladder Diagram Code from Stateflow Chart” on page 3-10.

3-9

3 Generating Ladder Diagram

Generate Ladder Diagram Code from Stateflow Chart

This example shows how to:

* Generate code from a Stateflow chart that you can view as Ladder Diagram in your

IDE.

* Generate test bench for validation of the Ladder Diagram code in your IDE.

For the complete Ladder Diagram code generation workflow, see “Ladder Diagram

Generation Workflow” on page 3-4.

Stateflow Chart and Ladder Logic Diagram

The figure shows a Stateflow chart that implements three-aspect logic, a decision logic for
many railway signaling applications.

'3

@
ExitSignal_Fault

ExitSignal_Fault

vl
ExitSignal_Init

ExitSignal_|nit

ExitSignal_green

o
ExitSignal_green

ExitSignal_red

ri
ExitSignal_red

+ExitSignal_yellow

Ly
ExitSignal_yellow

B
Yellow_Timer OVER

Yellow Timer OV

s’
AspectControlSatisifed

AspectConirol Satisife

FaultRectified

H
FaultRectified
e

GreenLampProving

Green La;in roving
I

Power_Up

Power Up
i

»RedLampProving

RedlLampProving

T2
VLDHealthy

VLDHealthy

b
YellowLampProving

‘rellowLampProving

Red

Red

Yallow

Graan

Fault

It

Yellow

Green

Fault

3Aspect

Init

3-10

Generate Ladder Diagram Code from Stateflow Chart

The chart consists of five states: Init, Fault, Red, Yellow, and Green. Based on the
input to the chart, transitions to any of these states can take place. For instance, the state
Red becomes active in the following scenarios:

* Initialization and power up: The previous state is Init and the condition Power Up
is true.

» Fault rectification: The previous state is Fault and the condition VLDHealthy &
FaultRectified is true.

* Transitions from other colors: The previous state is Green or Yellow, the
conditions that allow transition to Red are true, and the conditions that allow
transition to another color or to the Fault state are false.

* Staying red: The previous state is Red and the conditions that allow transition to
another state are false.

)

[WVLDHealthy ...
& FaultRectified] Fault

[-RedLampProving ...

[~YellowLampProving .. 1

~VLDHealthy)

[ExitSignal_red ..
& YellowLampProving]

3-11

3 Generating Ladder Diagram

The figure shows a portion of the Ladder Diagram code generated from the chart when
viewed in the CODESYS 3.5 IDE. The Ladder Diagram consists of contacts (normally open
and normally closed) and coils (normal, set, and reset).

Red_new

D

Fault T 11

!

rans T 2 2 trans

1t
11 T
/1 {/—

1t
I
L)
Green T 2 3 trans T 2_
I
L)

!

Init Power Up

!

-
™~

Red rans T 4

!

Yellow rans T 5
It

-
o
en ==

= ==d ==

-
o
I
a
-
o

R N V= ™

=0 ==d ==
2 2 2
=

-
|
e
!
|
I
a
-
e

L]

v
i
E
-
n
I
a
-
n

rans T_5_3_trans

{/—

I
o
= =08 =q

9 8

L,

Red_new

!

You can map elements of the original Stateflow chart to these coils and contacts. For
instance, the coil Red new corresponds to the update of the state Red in the Stateflow
chart. For the coil to receive power, one of the following must be true:

* Initialization and power up: The normally open contacts Init and Power Up must
be closed.

» Fault rectification: The normally open contacts Faultand T 1 1 trans must be
closed. The contact T 1 1 trans represents the transition condition VLDHealthy &
FaultRectified in the chart.

* Transitions from other colors: The normally open contact Green must be closed
and the following must be true:

* The normally open contact T 2 3 trans must be closed. This contact corresponds

to the chart condition that must be true for transition to the Red state.
* The normally closed contacts T 2 1 transand T 2 2 trans must stay closed.

These contacts correspond to the chart condition that must be false for transition
to the Red state. If the conditions are true, the contacts open and the coil no longer
receives power.

3-12

Generate Ladder Diagram Code from Stateflow Chart

* Staying red: The normally open contact Red must be closed, and the normally closed
contacts T 4 1 transand T 4 2 trans must stay closed. These contacts
correspond to the chart conditions that must be false for the Red state to continue to
be active. If the conditions are true, the contacts open and the coil no longer receives
power.

Generate Ladder Diagram from Chart

To generate Ladder Diagram code from the model plcdemo_ladder three aspect:

Open the model.
Specify the target IDE for which to generate the Ladder Diagram code.

Right-click the chart and select PLC Code > Options. Specify a supported IDE for
the option “Target IDE” on page 13-3. See “IDEs Supported for Ladder Diagram
Code Generation” on page 1-7.

3 Right-click the chart and select PLC Code > Generate Ladder Logic for Chart.

If code generation is successful, in the subfolder plcsrc of the current working folder,
you see the file Mode IName . xm1. You import this file to your IDE and view the Ladder
Diagram. For the CODESYS 3.5 IDE, see “Import Ladder Diagram Code to CODESYS 3.5
IDE and Validate Diagram” on page 3-15.

You can also use the function plcgenerateladder to generate Ladder Diagram code
from a Stateflow chart.

Generate Ladder Diagram Along with Test Bench

You can generate a test bench to validate the generated Ladder Diagram code. You import
the code together with the test bench in your IDE and validate the Ladder Diagram
against the original Stateflow chart using the test bench. To generate test bench along
with the Ladder Diagram code:

1 Right-click the chart and select PLC Code > Options. Select the option “Generate
Testbench for Subsystem” on page 13-9.

2 Right-click the chart and select PLC Code > Generate Ladder Logic for Chart.

The test benches use the inputs to the original Stateflow chart. Therefore, you can create
test harnesses for the original chart and reuse them for validation of the Ladder Diagram
code.

3-13

3 Generating Ladder Diagram

You can also use the function plcgenerateladder to generate test benches.

After generating the Ladder Diagram code and the test benches, you can import them to
your IDE. For the CODESYS 3.5 IDE, see “Import Ladder Diagram Code to CODESYS 3.5
IDE and Validate Diagram” on page 3-15.

3-14

Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram

Import Ladder Diagram Code to CODESYS 3.5 IDE and
Validate Diagram

This example shows how to import generated Ladder Diagram code to an IDE and
validate the generated code against the original Stateflow chart by using the generated
test bench.

For this example, the CODESYS 3.5 IDE is used. You can also use one of the other
supported IDE. See “IDEs Supported for Ladder Diagram Code Generation” on page 1-7.

For the complete Ladder Diagram code generation workflow, see “Ladder Diagram
Generation Workflow” on page 3-4.

Import Ladder Diagram XML

After code generation, you see the Ladder Diagram code XML file Mode IName . xml in a
subfolder plcsrc of the current working folder. To import the generated XML and view
the Ladder Diagram in the CODESYS 3.5 IDE:

Create an empty project.
2 Import the Ladder Diagram code to the project.

Select Project > Import PLCOpenXML and navigate to the folder containing the
XML file.

A dialog box opens with a full list of the components imported from the XML. If you
generate a test bench for validation, you also see the testbench.

3-15

3 Generating Ladder Diagram

i '

Contents | Additional information |

Please select the items which should be imported.
All items will be imported below the node which is currently selected in the navigator.
You can change this selection while this dialog is open.

Currently selected target object: (Root)

Insertable items:

=-[7] [copesys_control_for x64
;"' a Application

~[#] @ GVL_CONSTS
-] @ GVL_VARS
-[#] & MainTB
@ TestBench
@ TestCasel
@ TestCase?
@ TestCase3d
@ TestCased
~[#] & TestCases
@ TestCaszeh
~[#] H] TestCase?

[Select =] [Deselect =] [Show Contents... [Ok] [Cancel

3 On the POUs pane, you see the project. View the Ladder Diagram in the project.
You can compare the Ladder Diagram with the original Stateflow chart.
For instance, if you generate Ladder Diagram code from the model

plcdemo ladder three aspect, in the Ladder Diagram, you can identify the
transition from the Fault state to the Red state.

3-16

Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram

Fault

Red 1
)i
The transition appears in the Ladder Diagram in three steps:
a The normally open contacts VLDHealthy and FaultRectified are closed. Coil
T 1 1 trans receives power and is energized.
'v’LDHeaﬂl:hy Faul:Rﬂa:[l::ified Tili%(]xj:rans
b The normally open contacts Faultand T 1 1 trans are closed. The coil
Red new receives power and is energized. Other conditions not shown in figure
must also be satisfied.
[—I | r
¢ The normally open contact Red new is closed. The coil Red receives power and
is energized.
[i

Besides coils @I and normally open contacts @ the Ladder Diagram also uses:

Normally closed contacts —l]f[l_ They appear if the ~ operator is used in a

transition condition.

Set coils _[[ED and reset coils _[IRII : They are used in the Ladder Diagram for chart

initialization. Reset coils are also used if you enforce additional safeguards against
multiple states from being simultaneously active. See the argument

InsertGuardResets in plcgenerateladder.

For more information about these symbols, refer to the IEC 61131-3 specifications.

3-17

3 Generating Ladder Diagram

3-18

build errors.

If the option is not active, you might have to change the version number in your XML.
Search for the version number in the XML and depending on the patch that you have,
replace it with the following version number:

* CODESYS V3.5 SP6 Patchl: 3.5.4.30

* CODESYS V3.5 SP6 Patch3: 3.5.6.30

* CODESYS V3.5 SP8 Patch2: 3.5.8.20

* CODESYS V3.5 SP8 Patch4: 3.5.8.40

Verify Ladder Diagram with Test Bench

In your project, you see the generated test bench. To simulate using the test bench and
validate your generated code:

1 F
Click the (Login) button and log in to the emulator device.

2
Click the * (Start) button and begin simulation.

3 Double-click a test bench in your project. You see the following variables updating to
reflect the results of validation.
* The variable testCycleNum increases from 0 to the number of cycles.

* The variable testVerify remains TRUE as long as the test bench verification
succeeds.

Restrictions on Stateflow Chart for Ladder Diagram Generation

Restrictions on Stateflow Chart for Ladder Diagram
Generation

Ladder Diagram semantics must be represented with switches and relays. Therefore, if
you intend to generate a Ladder Diagram from a Stateflow chart, you cannot use some
advanced features in your chart. The Stateflow chart must have the following form:

The inputs and outputs to the chart must be Boolean. These inputs and outputs
correspond to the input and output terminals of your PLC.

Each state of the chart must correspond to a chart output.

The expressions controlling the transition between states must involve only Boolean
operations between the inputs.

In addition, the chart must have the following properties. You can use the function
plccheckforladder to check if the chart has the required properties. You can also use
the function plcprepareforladder to change certain chart properties so that the chart
is ready for Ladder Diagram code generation.

The chart Action Language must be C.
You must disable the following chart properties:

* Enable Super Step Semantics
* Execute (enter) Chart At Initialization
+ Initialize Outputs Every Time Chart Wakes Up

The chart must have at least one input and output. The input and output data must be
Boolean.

Each output must correspond to a state in the chart. The output is true if the state is
active.

To ensure that each state in the chart is mapped to an output, in the Properties dialog
box of each state, select Create output for monitoring. Then, select Self
activity.

3-19

3 Generating Ladder Diagram

r State Fault Iﬁ

General | Documentation |

Mame: Fault
State Output
Fault Create output for monitoring: [Self activity v]
Data name: Fault

5 [ok [cancel |[Help || apply

e

The chart must not have data with scope other than input or output.
The chart must not include:

Atomic subcharts

Multiple default transition

Simulink functions

Parallel states

State hierarchy

History junctions

Dangling transitions

Super transitions crossing subchart boundaries
Conditional default paths

Self transitions

See Also

Related Examples

3-20

“Prepare Chart for Ladder Diagram Generation” on page 3-6
“Generate Ladder Diagram Code from Stateflow Chart” on page 3-10

“Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram” on page
3-15

See Also

More About

. “Ladder Diagram Generation for PLC Controllers” on page 3-2

3-21

3 Generating Ladder Diagram

Import Ladder Diagram into Simulink

(End)

3-22

Ladder Diagram is a graphical programming language used to develop software for
programmable logic controllers (PLCs). It is one of the languages that the IEC 61131
Standard specifies for use with PLCs. A program in Ladder Diagram notation is a circuit
diagram that emulates circuits of relay logic hardware. The underlying program uses
Boolean expressions that translate readily to switches and relays.

The ladder import feature of Simulink PLC Coder allows you to import Ladder Diagram
created with Rockwell Automation IDEs such as RSLogix 5000 and Studio 5000 into the
Simulink environment as a model. After importing, you can edit, simulate, and generate
code for the Ladder Diagram models from within the Simulink environment.

» After importing the Ladder Diagram into Simulink, you can simulate the Ladder
Diagram within Simulink.

* Generating C code from the imported Ladder Diagram allows you to integrate the
code into your existing C language-based simulation environments.

The following is an example of a simple Ladder Diagram with the JMP element and its
equivalent model in Simulink after ladder import.

Switch_A
i B
F— —

Light1
v
C

LBL1_ Light! Motor

—{LBL}— E - o—

The Simulink subsystem containing the ladder implementation.

Import Ladder Diagram into Simulink

Switch_A Light1

I ¢y —fF—=
Rung2 startfill Ughtt Ught2 s
: g i
Light1 Motor
Rungs sl LeL fﬁ;j

-J... —]

Pwer Rail EMI

Supported Features

Ladder import supports the following features:

* Import single RSLogix AOI or program.
* Boolean variables

* Support for basic ladder functions like XIC, XIO, and OTE.

» Data access to array elements, bus elements, bit, and constant variables.

¢ Multiple rungs

* Simple Jumps, returns, and other supported execution control elements.
* C code generation from the imported model.

Supported Ladder Elements

Simulink PLC Coder supports the following ladder elements:

XIC XIO OTE OTL OTU JMP
LBL ADD AFI AND CLR EQU
GEQ GRT LEQ LES MOV MUL
NEQ ONS SUB FRD CTU RTO

3-23

3 Generating Ladder Diagram

3-24

RES FLL UDT Timer: TON |Timer: TOFF |Counter
Arrays Tags Alias Tags Bit Access COP

See Also

More About

. “Import L5X Ladder Files into Simulink” on page 3-25

Import L5X Ladder Files into Simulink

Import L5X Ladder Files into Simulink

{End)

This example shows how to import a Ladder Diagram from an L5X file created using
Rockwell Automation IDEs such as RSLogix 5000 and Studio 5000 into the Simulink
environment. The import operation is performed using the plcimportladder function.

Description of the Ladder Diagram

The figure shows a Ladder Diagram with a simple timer. The Ladder Diagram consists of
four rungs with contacts (Switch A, Lightl, Motor timer.DN), coils (Light1,
Light2, EN, DN, Motor), and TON timer function.

Switch_A Light1
hA 2
_ -2
Light1 Light2
1 E <>
Light1 ~TON-)
E Timer On Delay FCEND>—
Timer Motor_timer
Preset 3000+ DN
Accum 0+
Motor_timer DN Metor

<

The simple timer.L5X file was created using the RSLogix 5000 IDE. A snippet of the
L5X file is shown.

<RSLogix5000Content SchemaRevision="1.0" SoftwareRevision="24.01" TargetName="MainProgram"
TargetType="Program" ContainsContext="true" Owner="MathWorks User, MathWorks, Inc."
ExportDate="Wed Aug 30 14:39:26 2017" ExportOptions="References DecoratedData Context
Dependencies ForceProtectedEncoding AllProjDocTrans">

<Controller Use="Context" Name="timer_and_counter">

<DataTypes Use="Context">

</DataTypes>

<Programs Use="Context">

<Program Use="Target" Name="MainProgram" TestEdits="false" MainRoutineName="MainRoutine"
Disabled="false" UseAsFolder="false">

<Tags>

3-25

3 Generating Ladder Diagram

Import Ladder Diagram

Use the plcladderimport function to import the ladder into Simulink. For this example,
the program Name of the ladder is MainProgram and the MainRoutineName is
MainRoutine.

>> plcimportladder('simple timer.L5X"', '"MainProgram', 'MainRoutine")

The Ladder Diagram is imported into the plcout\simple timer.mdl Simulink model.
The state information of the ladder elements is stored in the data store memory and
updated by the model during simulation. The plcout

\simple timer initialValues.m file gets called during the pre-load stage of the
Simulink model. This file sets the timer initial values in Motor timer data store memory.

78l simpie_tmer ¥ [Pa] MainProgram ¥ -

The MainRoutine subsystem contains the Simulink implementation of the
simple timer.L5X Ladder Diagram. The ladder rung executes from top to bottom and
left to right.

3-26

Import L5X Ladder Files into Simulink

Switch_A Light1
1 |l .
Light1 Light2
Rung2Start| .
T .._* l_ o I:; . 4-|
Light1 i
RUNg3S: otor_timer
ung3start| ‘_‘ I_ N ._.l
= =
Motor_timer.DN Motor
nungnstart.
!l 1
‘ 1
Power End-

You can use the Signal Builder block to generate test inputs for Switch A and verify the
operation of the imported ladder. You can also generate C code for the top-level
subsystem. If you want to edit the imported ladder, the Simulink blocks are in the
template ladder diagram instruction template.

To perform simulation on imported AOI, you must perform additional steps. This is
because the AOI structure that is imported is not connected to any input, so you must add
the Power Start, and Terminator blocks as shown.

3-27

3 Generating Ladder Diagram

g TGS - Samutrm et s

Ble [0 Yew Dupey Duges Jeudsion deshes fode e

Beo-Be s BO-E-w4Bp A

=~
& By

@
4
e 3
&
=
3
3
5
-
[] 3

3-28

Famiedte

Import L5X Ladder Files into Simulink

P iwien S et wpiios | Lo prereann e

Phe idh Wem [aghny Cipim Geubsen desien o ek by

Beo-H HO-E-eqEF o0 O

B i =

o e b e e

RELDSE

Power Stanr |
-»T

Aspect

3-29

3 Generating Ladder Diagram

See Also

plcgeneratecode | plcimportladder

More About

. “Import Ladder Diagram into Simulink” on page 3-22

3-30

Generating Test Bench Code

* “How Test Bench Verification Works” on page 4-2

* “Integrate Generated Code with Custom Code” on page 4-3

* “Import and Verify Structured Text Code” on page 4-5

» “Verify Generated Code with Multiple Test Benches” on page 4-9

4 Generating Test Bench Code

How Test Bench Verification Works

The Simulink PLC Coder software simulates your model and automatically captures the
input and output signals for the subsystem that contains your algorithm. This set of input
and output signal data is the test bench data. The coder also automatically generates a
test bench, or test harness, using the test bench data.

The test bench runs the generated code to verify that the output is functionally and
numerically equivalent to the output from the execution of a Simulink model. The
following table shows how the test bench compares the expected and actual data values.

Data Type Comparison Error Tolerance
integer absolute 0

boolean absolute 0

single relative 0.0001

double relative 0.00001

The relative tolerance comparison for single or double data types uses the following logic:
IF ABS(actual value - expected value) > (ERROR TOLERANCE * expected value) THEN

testVerify := FALSE;
END IF;

To verify the generated code using the test bench, import the generated Structured Text
and the test bench data into your target IDE. You can import test bench code:

* Manually.
* Automatically, including running the test bench.

For more information, see “Import and Verify Structured Text Code” on page 4-5.

Depending on the target IDE platform, the Simulink PLC Coder software generates code
into one or more files. See “Files Generated with Simulink PLC Coder” on page 1-23 for
list of the target IDE platforms and the possible generated files.

4-2

Integrate Generated Code with Custom Code

Integrate Generated Code with Custom Code

For the top-level subsystem that has internal state, the generated FUNCTION BLOCK code
has ssMethodType. ssMethodType is a special input argument that the coder adds to
the input variables section of the FUNCTION BLOCK section during code generation.
ssMethodType enables you to execute code for Simulink Subsystem block methods such
as initialization and computation steps. The generated code executes the associated CASE
statement based on the value passed in for this argument.

To use ssMethodType with a FUNCTION BLOCK for your model, in the generated code,
the top-level subsystem function block prototype has one of the following formats:

Has Internal
State

ssMethodType Contains...

Yes

The generated function block for the block has an extra first
parameter ssMethodType of integer type. This extra parameter is in
addition to the function block I/O parameters mapped from Simulink
block I/O ports. To use the function block, first initialize the block by
calling the function block with ssMethodType set to integer constant
SS INITIALIZE. If the IDE does not support symbolic constants, set
ssMethodType to integer value 0. For each follow-up invocation, call
the function block with ssMethodType set to constant SS_STEP. If
the IDE does not support symbolic constants, set ssMethodType to
integer value 1. These settings cause the function block to initialize or
compute and return output for each time step.

No

The function block interface only has parameters mapped from
Simulink block I/O ports. There is no ssMethodType parameter. To
use the function block in this case, call the function block with I/O
arguments.

For non top-level subsystems, in the generated code, the subsystem function block
prototype has one of the following formats:

Has Internal ssMethodType Contains...
State
Yes The function block interface has the ssMethodType parameter. The

generated code might have SS _INITIALIZE, SS OUTPUT, or other
ssMethodType constants to implement Simulink semantics.

4-3

4 Generating Test Bench Code

No The function block interface only has parameters mapped from
Simulink block I/O ports. There is no ssMethodType parameter.

4-4

Import and Verify Structured Text Code

Import and Verify Structured Text Code

After you generate code and test benches for your subsystem, you can import them to
your target IDE. Using the test bench data, you can verify that the results from your
generated code match your simulation results.

If you want to import the generated code, see “Generate and Automatically Import
Structured Text Code” on page 1-27.

Generate, Import, and Verify Structured Text

If you are working with the PHOENIX CONTACT (previously KW) Software MULTIPROG
5.0/5.50 or Phoenix Contact PC WORX 6.0 IDE, see “Import and Verify Structured Text to
PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0 and Phoenix Contact PC
WORX 6.0 IDEs” on page 4-6.

Otherwise, to generate, import, and verify Structured Text code:
1 Specify that test bench code must be generated for the subsystem.

a Right-click your subsystem and select PLC Code > Options.
b Select “Generate Testbench for Subsystem” on page 13-9.

If you do not specify that test bench code must be generated, when you automatically
verify the generated code, you see the error Testbench not selected.

2 You can generate the code and testbench, and manually import them to your target
IDE. For information on how to import generated code, see the user manual for your
target IDE.

Alternatively, after code generation, import and verify the generated code
automatically. Right-click the subsystem and select PLC Code > Generate, Import,
and Verify Code for Subsystem. The software:

a Generates the code and test bench.

b Starts the target IDE.

Creates a project.

a n

Imports the generated code and test bench to the new project in the target IDE.
e Runs the generated code on the target IDE to verify it.

4 Generating Test Bench Code

4-6

For information on:
» IDEs not supported for automatic import and verification, see “Troubleshoot
Automatic Import Issues” on page 1-28.

» Possible reasons for long testbench code generation time, see “Troubleshooting: Long
Test Bench Code Generation Time” on page 4-7.

Import and Verify Structured Text to PHOENIX CONTACT
(previously KW) Software MULTIPROG 5.0 and Phoenix
Contact PC WORX 6.0 IDEs

Before you can automatically import generated code to this IDE, create an Empty
template. You must have already set your target IDE to KW-Software MULTIPROG 5.0 or
Phoenix Contact PC WORX 6.0.

1 Start the PHOENIX CONTACT (previously KW) Software MULTIPROG 5.0/5.50 or
Phoenix Contact PC WORX 6.0 IDE.

2 Select File > Delete Template. Delete any template named Empty, and click OK
when done.

3 Select File > New Project, select Project Wizard, then click OK.

In the Project Name field, type Empty,

In the Project Path field, type or select a path to which you have write
privileges.

Click Next.

d In the remaining wizard pages, click Next to leave the default selections. At the
end of the wizard, click Finish.

The IDE is updated with the new Empty project tree.
4 In the project, delete everything under the following nodes:

* Logical POUs
* Physical Hardware

5 Verify that the project tree has only top-level nodes for Libraries, Data Types,
Logical POUs, and Physical Hardware. There must not be any subtree nodes.

6 In the IDE, select File > Save As Template.

Import and Verify Structured Text Code

7 In Template Name, type Empty.
8 Click OK.
9 Close the IDE interface.

Open your model, right-click the Subsystem block, and select one of the following:

* PLC Code > Generate and Import Code for Subsystem
* PLC Code > Generate, Import, and Verify Code for Subsystem

If you automatically generate, import, and verify code, the software:

Generates the code and test bench.

Starts the target IDE.

Creates a project.

Imports the generated code and test bench to the new project in the target IDE.
Runs the generated code on the target IDE to verify it.

g A W N =

Troubleshooting: Long Test Bench Code Generation Time

If code generation with test bench takes too long, one possible reason is that the test
bench data size exceeds the limit that Simulink PLC Coder can handle. The test bench
data size is directly related to the number of times the input signal is sampled during
simulation. For large simulation time or more frequent sampling, the test bench data can
be large.

To reduce test bench generation time, do one of the following:

* Reduce the duration of the simulation.
* Increase the simulation step size.

» If you want to retain the simulation duration and the step size, divide the simulation
into multiple parts. For a simulation input signal with duration [0, t], divide the input
into multiple parts with durations [0, t,], [Ty, T, 1, [t,, T3], etc., where t; < t, < t3
< .. < t. Generate test bench code for each part separately and manually import
them together to your IDE.

4 Generating Test Bench Code

See Also

Related Examples
. “Verify Generated Code with Multiple Test Benches” on page 4-9

4-8

Verify Generated Code with Multiple Test Benches

Verify Generated Code with Multiple Test Benches

You can generate code with multiple test benches from your subsystem. For the
generated code to have multiple test benches, the input to your subsystem must consist of
multiple signal groups.

To generate multiple test benches for your subsystem:

1 Provide multiple signal groups as inputs by using a Signal Builder block with multiple
signal groups (Simulink).

Instead of manually entering a Signal Builder block and creating multiple signal
groups, you can use Simulink Design Verifier to create a test harness model from the
subsystem. In the test harness model, a Signal Builder block with one or more signal
groups provides input to the subsystem. You can use this Signal Builder block to
provide inputs to your subsystem. However, if your model is complex, Simulink
Design Verifier can create large number of signal groups. See “Troubleshooting: Test
Data Exceeds Target Data Size” on page 4-11.

To create your Signal Builder block with Simulink Design Verifier:

a Right-click the subsystem and select Design Verifier > Generate Tests for

Subsystem.
b In the Simulink Design Verifier Results Summary window, select Create harness
model.
Size-Type
TestCme e 1 SerAionStaus 4 fods_ 1
MAM_1IF > TR
e ControlerOutf—— (T
MEO_TIF — o M50_t Cort e Out
L MAFR_1IPE— R
Inputs Test Unit { copied from Controller 1)
[
DOC
Text

Test Case Explanation

4-9

4 Generating Test Bench Code

¢ Open the Inputs block in the test harness model. The Inputs block is a Signal
Builder block that can have one or more signal groups.

In the Signal Builder window, make sure that more than one signal group is
available in the Active Group drop-down list.

-

-
z Signal Builder (pledemo_motion_control_harnessd/Inputs) E‘M

File Edit Group Signal Axes Help

SH| 4B oo —T 0B REE] 0 on | 5|

"

Active Group: | | Test Case 1 EI

14 Test Case 2
Ayl Test Caze 3

Yol | | .

1k
0.5

MAM_1.IP

| MSO_1.IP

MAFR_1.1P

Hame: |Axis_1.Servoiction!

Index: |1 ~

Click to select, Shift+click to add | Axis_1.ServoActionStatus (#1) [YMin YMax]

d Copy the Signal Builder block from the test harness model and use this block to
provide inputs to your original subsystem.

2 Specify that test benches must be generated for the subsystem.

a Right-click your subsystem and select PLC Code > Options.

4-10

See Also

b Select “Generate Testbench for Subsystem” on page 13-9.

3 Right-click the subsystem and select PLC Code > Generate, Import and Verify
Code for Subsystem.

In your target IDE, you can see multiple test benches. Each test bench corresponds
to a signal group.

Troubleshooting: Test Data Exceeds Target Data Size

If the test data from the multiple signal groups exceeds the maximum data size on your
target, you can encounter compilation errors. If you encounter compilation errors when
generating multiple test benches, try one of the following:

* Reduce the number of signal groups in the Signal Builder block and regenerate the
test benches.

* Increase the simulation step size for the subsystem.

See Also

Related Examples
. “Import and Verify Structured Text Code” on page 4-5

4-11

Code Generation Reports

* “Information in Code Generation Reports” on page 5-2

* “Create and Use Code Generation Reports” on page 5-4

* “View Requirements Links from Generated Code” on page 5-16
* “Working with the Static Code Metrics Report” on page 5-17

5 Code Generation Reports

Information in Code Generation Reports

5-2

The coder creates and displays a Traceability Report file when you select one or more of
these options:

GUI Option Command-Line Property Description

Generate PLC GenerateReport Specify whether to create code

traceability generation report.

report

Generate PLC GenerateWebview Include the model web view in the

model web code generation report to navigate

view between the code and model within
the same window. You can share
your model and generated code
outside of the MATLAB
environment.

In the Configuration Parameters dialog box, in the Report panel, you see these options.

Code generation report
Generate traceability report

Generate model web view

Note You must have a Simulink Report Generator™ license to generate traceability
reports.

The coder provides the traceability report to help you navigate more easily between the
generated code and your source model. When you enable code generation report, the
coder creates and displays an HTML code generation report. You can generate reports
from the Configuration Parameters dialog box or the command line. Traceability report
generation is disabled when generating Ladder Diagrams from Stateflow chart. See
“Traceability Report Limitations” on page 11-4. A typical traceability report looks
something like this figure:

Information in Code Generation Reports

Code Generation Report

@& Find: I:l{} % Match Case

Traceability Report
Code Metrics Report

Generated Files

SimpleSubsystem.exp

Traceability Report for plcdemo_simple_subsystem

Table of Contents

1. Eliminated / Virtual Blocks
2. Traceable Simulink Blocks / Stateflow Objects / MATLAB Functions
o pledemo_simple_subsystem/SimpleSubsystem

Eliminated / Virtual Blocks

Block Name Comment
<81>/U Inport
<81>/¥ Outport

Traceable Simulink Blocks / Stateflow Objects / MATLAB Functions

Subsystem: plcdemo_simple_subsystem/SimpleSubsystem

Object Name Code Location

<81>/Gain SimpleSubsystem.exp:43
<81>/Sum SimpleSubsystem.exp:45
<81>/Unit Delay SimpleSubsystem.exp:40, 46, 50

OK Help

5-3

5 Code Generation Reports

Create and Use Code Generation Reports

In this section...

“Generate a Traceability Report from Configuration Parameters” on page 5-4
“Keep the Report Current” on page 5-6

“Trace from Code to Model” on page 5-7

“Trace from Model to Code” on page 5-8

“Model Web View in Code Generation Report” on page 5-9

“Generate a Static Code Metrics Report” on page 5-13

“Generate a Traceability Report from the Command Line” on page 5-14

Generate a Traceability Report from Configuration Parameters

To generate a Simulink PLC Coder code generation report from the Configuration
Parameters dialog box:
Verify that the model is open.

Open the Configuration Parameters dialog box and navigate to the PLC Code
Generation pane.

3 To enable report generation, select Report > Generate traceability report.
Click Apply.

Create and Use Code Generation Reports

& Configuration Parameters: plcdemo_simple_subsystem/Configuration (Active)

+ Commonly Used Parameters.

Select:

Solver
Data Import/Export
Optimization
Diagnostics
Hardware Implementation
Model Referencing
Simulation Target
Code Generation
Coverage
HDL Code Generation
* PLC Code Generation
Comments
Optimization
Symbols
Report

- O X
~
= All Parameters
Code generation report
Generate traceability report
[Generate model web view
W
>
OK Cancel Help Apply

5 Click PLC Code Generation > Generate code to initiate code and report
generation. The coder generates HTML report files as part of the code generation

process.

The HTML report appears:

5 Code Generation Reports

P&l code Generation Repart - O X
& Find: I:lﬁ} % Match Case
Traceability Reort Traceability Report for plcdemo_simple_subsystem

Code Metrics Report
Table of Contents

Generated Files 1. Eliminated / Virtual Blocks

SimpleSubsystem.exp 2. Traceable Simulink Blocks / Stateflow Objects / MATLAB Functions
o plcdemo_simple_subsystem/SimpleSubsystem

Eliminated / Virtual Blocks

Block Name Comment
<51>/U Inport
<S1>/¥ Outport

Traceable Simulink Blocks / Stateflow Objects / MATLAB Functions

Subsystem: plcdemo_simple_subsystem/SimpleSubsystem

Object Name Code Location

<S1>/Gain SimpleSubsystem.exp:43
<S1>/Sum SimpleSubsystem.exp:45
<51>/Unit Delay SimpleSubsystem.exp:40, 46, 50

OK Help

For more information, see:

* “Trace from Code to Model” on page 5-7
* “Trace from Model to Code” on page 5-8

Keep the Report Current

If you generate a code generation report for a model, and then change the model, the
report becomes invalid. To keep your code generation report current, after modifying the
source model, regenerate code and the report. If you close and then reopen a model,
regenerate the report.

Create and Use Code Generation Reports

Trace from Code to Model

You must have already generated code with a traceability report. If not, see “Generate a
Traceability Report from Configuration Parameters” on page 5-4 or “Generate a
Traceability Report from the Command Line” on page 5-14.

To trace generated code to your model:

1 In the generated code HTML report display, look for <S1>/Gain. Code Generation
Report has syntax highlighting for easy readability. PLC-specific keywords are
highlighted in blue, comments in green, and the rest of the code in black.

S1/Gain

2 In the HTML report window, click a link to highlight the corresponding source block.
For example, in the HTML report shown in the previous figure, you click the
hyperlink for the Gain block (highlighted) to view that block in the model. Clicking
the hyperlink locates and displays the corresponding block in the model editor
window. You can use the same method to trace other block from the HTML report.

5-7

5 Code Generation Reports

double double double
. 03 >
u b

‘ Zain

double

i
z

Trace from Model to Code

You can select a component at any level of the model with model-to-code traceability. You
can also view the code references to that component in the HTML code generation report.
You can select the following objects for tracing:

Subsystem

Simulink block

MATLAB Function block

Truth Table block

State Transition Table block

Stateflow chart, or the following elements of a Stateflow chart:

State

Transition
Graphical function
MATLAB function
Truth table function

You must have already generated code with a traceability report to trace a model
component to the generated code. If not, see “Generate a Traceability Report from
Configuration Parameters” on page 5-4 or “Generate a Traceability Report from the
Command Line” on page 5-14.

To trace a model component to the generated code:

1

In the model window, right-click the component and select PLC Code > Navigate to
Code.

Create and Use Code Generation Reports

Coverage L4

n Q E Maodel Advisor L4

Fixed-Point Tool...

Maodel Transformer L4
Uni C/C++ Code 4
HOL Code L4
PLC Code D Navigate to Code

Polyspace L4
2 Selecting Navigate to Code activates the HTML code generation report. The
following figure shows the result of tracing the Gain block within the subsystem.

UnitDelay DSTATE := 0.0;

55 STEP:

rtb Gain := (U - UnitDelay DSTATE) 1.1;

In the report, the highlighted tag S1/Gain indicates the beginning of the generated
code for the block. You can use the same method to trace from other Simulink,
Stateflow, and MATLAB objects to the generated traceability report.

For a programmatic way to trace a block in the model to generated code, see rtwtrace.

Model Web View in Code Generation Report
Model Web Views

To review and analyze the generated code, it is helpful to navigate between the code and
model. You can include a web view of the model within the HTML code generation report.
You can then share your model and generated code outside of the MATLAB environment.
You need a Simulink Report Generator license to include a Web view (Simulink Report
Generator) of the model in the code generation report.

Browser Requirements for Web Views

Web views require a web browser that supports Scalable Vector Graphics (SVG). Web
views use SVG to render and navigate models.

5-9

5 Code Generation Reports

5-10

You can use the following web browsers:

Mozilla® Firefox® Version 1.5 or later, which has native support for SVG. To download
the Firefox browser, go to www.mozilla.com/.

Apple Safari Web browser

The Microsoft® Internet Explorer® web browser with the Adobe® SVG Viewer plugin.
To download the Adobe SVG Viewer plugin, go to www.adobe.com/svg/.

Note Web views do not currently support Microsoft Internet Explorer 9.

Generate HTML Code Generation Report with Model Web View

This example shows how to create an HTML code generation report which includes a web
view of the model diagram.

Open the plcdemo _simple subsystem model.

Open the Configuration Parameters dialog box and navigate to the Code Generation
pane.

To enable report generation, select Report > Generate traceability report.
To enable model web view, select Report > Generate model web view.
Click Apply.

The dialog box looks something like this figure:

https://www.mozilla.com/
https://www.adobe.com/svg/

Create and Use Code Generation Reports

& Configuration Parameters: plcdemo_simple_subsystem/Configuration (Active)

+ Commonly Used Parameters = All Parameters

Select: Caode generation report

Solver Generate traceability report
Data Import/Export
Optimization
Diagnostics
Hardware Implementation
Model Referencing
Simulation Target
Code Generation
Coverage
HDL Code Generation
* PLC Code Generation
Comments
Optimization
Symbols
Report

Generate model web view

>

\)’ OK Cancel Help Apply

6 Click PLC Code Generation > Generate code to initiate code and report
generation. The code generation report for the top model opens in a MATLAB web

browser.

5-11

5 Code Generation Reports

5-12

& Find: l:lﬁ_ﬁ % Match Case
Traceability Report for plcdemo_simple_subsystem

Traceability Report
Code Metrics Report

Generated Files

SimpleSubsystem.ex

Table of Contents

1. Eliminated / Virtual Blocks

2. Traceable Simulink Blocks / Stateflow Objects / MATLAB Functions

o plcdemo_simple_subsystem/SimpleSubsystem

Eliminated / Virtual Blocks

Block Name Comment
<S1>/U Inport
<S1x/Y Outport

Traceable Simulink Blocks / Stateflow Objects / MATLAB Functions

Suhswstem: nledemn_simnle _sihsustem/SimnleSuhsvstem

®

»

SimpleSubsystem H View All |

[*a| plcdemo_simple_subsystem » [f SimpleSubsystem ~| Q

Unit Delay

SimpleSubsystem

~Main
ShowPortLabels
Permissions
ErrorFen
PermitHierarchical...
TreatAsAtomicUnit
MinAlgLoopOccurr...
SystemSampleTime

FromPortlcon
ReadWrite

All
on
off
-1

~ Code Generation

RTWSystemCode

RTWFcnNameOpis
RTWFcnName
RTWFileNameOpts

Nonreusable
function

User specified
SimpleSubsystem
Auto

OK Help

7 In the left navigation pane, select a source code file. The corresponding traceable
source code is displayed in the right pane and includes hyperlinks.

8 Click a link in the code. The model web view displays and highlights the

corresponding block in the model.

9 To go back to the code generation report for the top model, at the top of the left
navigation pane, click the Back button until the report for the top model is displayed.

For more information about navigating between the generated code and the model

diagram, see:

Create and Use Code Generation Reports

“Trace from Code to Model” on page 5-7
“Trace from Model to Code” on page 5-8

Model Web View Limitations

When you are using the model web view, the HTML code generation report includes the
following limitations:

Code is not generated for virtual blocks. In the model web view, if you click a virtual
block, the code generation report clears highlighting in the source code files.

Stateflow truth tables, events, and links to library charts are not supported in the
model web view.

Searching in the code generation report does not find or highlight text in the model
web view.

In a subsystem build, the traceability hyperlinks of the root-level inports and outports
blocks are disabled.

If you navigate from the actual model diagram (not the model web view in the report),
to the source code in the HTML code generation report, the model web view is
disabled and not visible. To enable the model web view, open the report again, see
“Open Code Generation Report” (Simulink Coder).

Generate a Static Code Metrics Report

The PLC Coder Static Code Metrics report provides statistics of the generated code. The
report is generated when you select Generate Traceability Report in the Configuration
Parameters dialog box. You can use the Static Code Metrics Report to evaluate the
generated PLC code before implementation in your IDE. For more information, see
“Working with the Static Code Metrics Report” on page 5-17.

The procedure is the same as generating the Traceability Report.

1

Open the Configuration Parameters dialog box and navigate to the PLC Code
Generation pane.

To enable report generation, select Report > Generate traceability report.
Click Apply.

Click PLC Code Generation > Generate code to initiate code and report
generation. The coder generates HTML report files as part of the code generation
process. The Code Metrics Report is shown on the left navigation pane.

5-13

5 Code Generation Reports

Code Generation Report — O w
< & Find: I:h} % Match Case
Traceability Report Static Code Metrics Report

e The static code metrics report provides statistics of the generated code. Metrics are estimated from static
. analysis of the generated code using the IEC 61131 data type specification: SINT 8, INT 16, DINT 32, REAL 32,
Generated Files LREAL 64 bits. Actual object code metrics might differ due to target specific compiler and platform settings.
SimpleSubsystem.exp
Table of Contents

. File Information

. Global Variables

. Global Constants

. Function Block Information

o p

1. File Information [hide]

[-1 Summary

Generated source files : 1
Lines of code : 8
Lines : 17

i-1 File details

File Name Generated On
SimpleSubsystem.exp 01/11/2017 10:27 PM

2. Global Variables [hide]

No global variables defined in the generated code.

Generate a Traceability Report from the Command Line

To generate a Simulink PLC Coder code generation report from the command-line code
for the subsystem, plcdemo _simple subsystem/SimpleSubsystem:

1 Open a Simulink PLC Coder model, for example:

open_system('plcdemo simple subsystem');

2 Enable the code generation parameter PLC_GenerateReport. To view the output in
the model web view, also enable PLC_GenerateWebview:

5-14

Create and Use Code Generation Reports

set param('plcdemo simple subsystem', 'PLC GenerateReport', 'on');
set param('plcdemo simple subsystem', 'PLC GenerateWebView', 'on');

Generate the code.

generatedfiles = plcgeneratecode('plcdemo _simple_subsystem/SimpleSubsystem')

A traceability report is displayed. In your model, a View diagnostics hyperlink
appears at the bottom of the model window. Click this hyperlink to open the
Diagnostic Viewer window.

If the model web view is also enabled, that view is displayed.

5-15

5 Code Generation Reports

View Requirements Links from Generated Code

5-16

For requirements reviews, design reviews, traceability analysis, or project documentation,
you can create links to requirements documents from your model with the Simulink
Requirements™ software. If your model has links to requirements documents, you can
also view the links from the generated code.

Note The requirement links must be associated with a model object. If requirements
links are associated with the code in a MATLAB Function block, they do not appear in
generated code comments.

To view requirements from generated code:
1 From your model, create links to requirements documents.

See, “Requirements Management Interface” (Simulink Requirements).

2 For the subsystem for which you want to generate code, specify the following
configuration parameters.

Option Purpose
Include comments on page 13-14 Model information must appear in code
comments.

Generate traceability report on page |After code is generated, a Code
13-38 Generation Report must be produced.

3 Generate code.

The Code Generation Report opens. The links to requirements documents appear in
generated code comments. When you view the code in the Code Generation Report,
you can open the links from the comments.

Working with the Static Code Metrics Report

Working with the Static Code Metrics Report

In this section...

“Workflow for Static Code Metrics Report” on page 5-17
“Report Contents” on page 5-18

“Function Block Information” on page 5-19

You can use the information in the Static Code Metrics Report to assess the generated
code and make model changes before code implementation in your target IDE.

Before starting, you must familiarize yourself with potential code limitations of your IDE.
For example, some IDEs have limits on the number of variables or lines of code in a
function block.

For detailed instructions on generating the report, see “Generate a Static Code Metrics
Report” on page 5-13.

Workflow for Static Code Metrics Report

This is the basic workflow for using the Static Code Metrics Report with your model.

5-17

5 Code Generation Reports

Generate the PLCcode | . Know the limits :r
for the subsystem 1\ for your IDE L
l A
pd ™
C?;:I(S::;::Ekélsem /// Are model Proceed to code
e P e changes needed? implementation

Yes
Click the function .| | Thereport will
block name 7| | display the code

Make necessary ‘ Trace from code to
changes ‘ model

Report Contents

The Static Code Metrics Report is divided into the following sections:
+ File Information: Reports high-level information about generated files, such as lines
and lines of code.

* Global Variables: Reports information about global variables defined in the
generated code.

* Global Constants: Reports information about global constants defined in the
generated code.

5-18

Working with the Static Code Metrics Report

Function Block Information: Reports a table of metrics for each function block
generated from your model.

Function Block Information

You can use the information in the Function Block Information table to assess the
generated code before implementation in your IDE. The leftmost column of the table lists
function blocks with hyperlinks. Clicking a function block name leads you to the function
block location in the generated code. From here, you can trace from the code to the
model. For more information, see “Trace from Code to Model” on page 5-7.

Code Generation Report

< & Find: l:lﬁ_ﬁ % Maich Case
2. Global Variables [hide] ~

Traceability Report

No global variables defined in the generated code.

Generated Files 3. Global Constants [hide

Simplesubsystem.ex Global constants defined in the generated code.

Global Constant Size (bytes)
SS_INITIALIZE 1
SS_STEP 1
Total 2

4. Function Block Information [hide]

Function block metrics in table format. "Number of Locals" includes state and temporary variables (does
not include other function block instance variables).

Name Self Stack Lines of Code Lines Number of Numberof Number of

Size (bytes) Inputs Qutputs Locals

SimpleSubsystem 33 8 17 2 1 2
v

5-19

Working with Tunable Parameters in
the Simulink PLC Coder
Environment

* “Block Parameters in Generated Code” on page 6-2
* “Control Appearance of Block Parameters in Generated Code” on page 6-5

6 Working with Tunable Parameters in the Simulink PLC Coder Environment

Block Parameters in Generated Code

Block parameters appear in the generated code as variables. You can choose how the
variables appear in the generated code. For instance, you can control the following
variable characteristics:

Whether the variables are inlined in generated code
Whether the variables are local to a function block, global, or not defined

To control how the block parameters appear in the generated code, you can either define
the parameters as Simulink.Parameter objects in the MATLAB workspace or use the
Model Parameter Configuration dialog box. For more information, see “Control
Appearance of Block Parameters in Generated Code” on page 6-5.

Simulink PLC Coder exports tunable parameters as exported symbols and preserves the
names of these parameters in the generated code. It does not mangle these names. As a
result, if you use a reserved IDE keyword as a tunable parameter name, the code
generation can cause compilation errors in the IDE. As a best practice, do not use IDE
keywords as tunable parameter names.

The coder maps tunable parameters in the generated code as listed in the following table:

block variables

defined in
generated code and
expected to be
defined externally.

Target IDE Parameter Storage Class
SimulinkGlobal |[ExportedGlobal |[ImportedExtern |Imported-
ExternPointer
CoDeSys 2.3 Local function Global variable Variable is not Ignored. If you set
block variables defined in the parameter to
generated code and |this value, the
expected to be software treats it
defined externally. [the same as
ImportedExtern.
CoDeSys 3.3 Local function Global variable Variable is not Ignored. If you set

the parameter to
this value, the
software treats it
the same as
ImportedExtern.

6-2

Block Parameters in Generated Code

Target IDE Parameter Storage Class
SimulinkGlobal |ExportedGlobal |ImportedExtern |Imported-
ExternPointer
CoDeSys 3.5 Local function Global variable Variable is not Ignored. If you set
block variables defined in the parameter to
generated code and |this value, the
expected to be software treats it
defined externally. [the same as
ImportedExtern.
B&R Local function Local function Local function Ignored. If you set
Automation block variable block variable block variable. the parameter to
Studio 3.0 this value, the
software treats it
the same as
ImportedExtern.
Beckhoff Local function Global variable Variable is not Ignored. If you set

TwinCAT 2.11

block variable

defined in
generated code and
expected to be

the parameter to
this value, the
software treats it

defined externally. |the same as
ImportedExtern.
KW-Software Local function Local function Local function Ignored. If you set
MULTIPROG block variable block variable block variable. the parameter to
5.0 this value, the
software treats it
the same as
ImportedExtern.
Phoenix Local function Global variable Variable is not Ignored. If you set
Contact PC block variable defined in the parameter to
WORX 6.0 generated code and |this value, the

expected to be
defined externally.

software treats it
the same as
ImportedExtern.

6-3

6 Working with Tunable Parameters in the Simulink PLC Coder Environment

Target IDE

Parameter Storage Class

SimulinkGlobal

ExportedGlobal

ImportedExtern

Imported-
ExternPointer

RSLogix 5000
17, 18: AOI

AOI local tags

AOI input tags

AOI input tags.

Ignored. If you set
the parameter to
this value, the
software treats it
the same as
ImportedExtern.

RSLogix 5000
17, 18: Routine

Instance fields of
program UDT tags

Program tags

Variable is not
defined in
generated code and
expected to be
defined externally.

Ignored. If you set
the parameter to
this value, the
software treats it
the same as
ImportedExtern.

Siemens
SIMATIC STEP
7

Local function
block variable

Local function
block variable

Local function
block variable.

Ignored. If you set
the parameter to
this value, the
software treats it

the same as
ImportedExtern.
Generic Local function Global variable Variable is not Ignored. If you set
block variable defined in the parameter to
generated code and |this value, the
expected to be software treats it
defined externally. [the same as
ImportedExtern.
PLCopen Local function Global variable Variable is not Ignored. If you set

block variable

defined in
generated code and
expected to be
defined externally.

the parameter to
this value, the
software treats it
the same as
ImportedExtern.

6-4

Control Appearance of Block Parameters in Generated Code

Control Appearance of Block Parameters in Generated
Code

Unless you use constants for block parameters in your model, they appear in the
generated code as variables. You can choose how these variables appear in the generated
code. For instance, you can control the following variable characteristics:

* Whether the variables are inlined in generated code

» Whether the variables are local to a function block, global, or not defined

For more information, see “Block Parameters in Generated Code” on page 6-2.

To control how the block parameters appear in the generated code:

1 Use variables instead of constants for block parameters.
2 Define these parameters in the MATLAB workspace in one of the following ways:

* Use a MATLAB script to create a Simulink.Parameter object. Run the script
every time that the model loads.

Simulink stores Simulink.Parameter objects outside the model. You can then
share Simulink.Parameter objects between multiple models.

* Use the Model Configuration Parameters dialog box to make the parameters
tunable.

Simulink stores global tunable parameters specified using the Configuration
Parameters dialog box with the model. You cannot share these parameters
between multiple models.

Note The MATLAB workspace parameter value must be of the same data type as
used in the model. Otherwise, the value of the variable in the generated code is set to
zero. See “Workspace Parameter Data Type Limitations” on page 11-3.

Configure Tunable Parameters with Simulink.Parameter
Objects

This example shows how to create and modify a Simulink.Parameter object.

6 Working with Tunable Parameters in the Simulink PLC Coder Environment

6-6

The model plcdemo _tunable params slparamobj illustrates these steps. The model
contains a Subsystem block SimpleSubsystem that has three Gain blocks with tunable
parameters, K1, K2, and K3.

1

Write a MATLAB script that defines the tunable parameters.

The following script setup_tunable params.m creates the constants K1, K2, and
K3 as Simulink.Parameter objects, assigns values, and sets the storage classes for
these constants. For more information on the storage classes, see “Block Parameters
in Generated Code” on page 6-2.

% define tunable parameters in base workspace as
% Simulink.Parameter objects

% tunable parameter mapped to local variable

K1 = Simulink.Parameter;

K1l.Value = 0.1;

K1.StorageClass = 'Model default';

% tunable parameter mapped to global variable
K2 = Simulink.Parameter;

K2.Value = 0.2;

K2.StorageClass = 'ExportedGlobal';
K2.CoderInfo.CustomStorageClass = 'Default’;

% tunable parameter mapped to global const
K3 = Simulink.Parameter;

K3.Value = 0.3;

K3.StorageClass = 'ExportedGlobal';
K3.CoderInfo.CustomStorageClass = 'Const';

Specify that the script setup tunable params.m must execute before the model
loads and that the MATLAB workspace must be cleared before the model closes.
a In the model window, select File > Model Properties > Model Properties.

b In the Model Properties dialog box, on the Callbacks tab, select PreLoadFcn.
Enter setup tunable params for Model pre-load function.

Control Appearance of Block Parameters in Generated Code

Maodel Properties: pledermno_tunable_params_slparamoh;j

Main Callbacks History Description Data

Model callbacks Model pre-load function:

PreLoadFcn* setup_tunable_params
PostLoadFcn

InitFcn
StartFcn
PauseFcn
ContinueFcn
StopFon
PreSaveFcn
PostSaveFcn
CloseFcn™®

Cancel Help Apply

¢ On the Callbacks tab, select CloseFcn. Enter clear K1 K2 K3; for Model
close function.

Every time that you open the model, the variables K1, K2, and K3 are loaded into the
base workspace. You can view the variables and their storage classes in the Model
Explorer.

Generate code and inspect it.

6 Working with Tunable Parameters in the Simulink PLC Coder Environment

6-8

Variable Storage Class

Generated Code (3S CoDeSys
2.3)

K1

Model default K1 is a local function block variable.

FUNCTION BLOCK SimpleSubsystem
VAR

K1: LREAL := 0.1;
END VAR

END_FUNCTION_BLOCK

K2

ExportedGlobal K2 is a global variable.

VAR GLOBAL
K2: LREAL := 0.2;
END VAR

K3

ExportedGlobal and K3 is a global constant.

CoderInfo.CustomStorageClass
set to Const. VAR_GLOBAL CONSTANT

SS_INITIALIZE: SINT := 0;
K3: LREAL := 0.3;
SS_STEP: SINT := 1;

END_VAR

Make Parameters Tunable Using Configuration Parameters
Dialog Box

This example shows how to make parameters tunable using the Model Configuration
Parameters dialog box.

The model plcdemo_tunable params illustrates these steps. The model contains a
Subsystem block SimpleSubsystem that has three Gain blocks with tunable parameters,
K1, K2, and K3.

1 Specify that the variables K1, K2, and K3 must be initialized before the model loads
and that the MATLAB workspace must be cleared before the model closes.

Control Appearance of Block Parameters in Generated Code

a Select File > Model Properties > Model Properties.

In the Model Properties dialog box, on the Callbacks tab, select PreLoadFcn.
Enter K1=0.1; K2=0.2; K3=0.3; for Model pre-load function.

¢ On the Callbacks tab, select CloseFcn. Enter clear K1 K2 K3; for Model
close function.

Select Simulation > Model Configuration Parameters.

Navigate to Optimization pane. Specify that all parameters must be inlined in the

generated code. Select Inlined for Default Parameter Behavior.

To override the inlining and make individual parameters tunable, click Configure. In
the Model Parameter Configuration dialog box, from the Source list, select
Referenced workspace variables.

Ctrl+select the parameters and click Add to table >>.

By default, this dialog box sets all parameters to the SimulinkGlobal storage class.
Set the Storage class and Storage type qualifier as shown in this figure. For more
information on the storage classes, see “Block Parameters in Generated Code” on
page 6-2.

6-9

6 Working with Tunable Parameters in the Simulink PLC Coder Environment

ﬂ Model Pararneter Configuration: pledemo_tunable_params — O >
Description
Define the global (tunable) parameters for your model. These parameters will affect the generated code by enabling access to parameters
Source list Global dunahle) parameters
Referenced workspace variables hd Mame Storage class Storage type gualifier
SimulinkGlobal (Auta) s w
Marme l<
ExportedGlahal w W
212
i <7 ExportedGlahal t
¥ |l cons w
2 K32 3 K3
IK3
Refresh list Add to table == [l et Rermuowve
Ready | ok || cancel | [Hew | [apply

6 Generate code and inspect it.

6-10

Control Appearance of Block Parameters in Generated Code

Variable

Storage Class

Generated Code (3S CoDeSys 2.3)

K1

SimulinkGlobal

K1 is a local function block variable.

FUNCTION BLOCK SimpleSubsystem
VAR

K1: LREAL := 0.1;
END VAR

END_FUNCTION_BLOCK

K2

ExportedGlobal

K2 is a global variable.

VAR _GLOBAL
K2: LREAL := 0.2;
END VAR

K3

ExportedGlobal and
Storage type qualifier set
to Const.

K3 is a global constant.

VAR GLOBAL CONSTANT
SS_INITIALIZE: SINT := 0;
K3: LREAL := 0.3;
SS STEP: SINT := 1;
END_VAR

6-11

Controlling Generated Code
Partitions

* “Generate Global Variables from Signals in Model” on page 7-2
* “Control Code Partitions for Subsystem Block” on page 7-3
* “Control Code Partitions for MATLAB Functions in Stateflow Charts” on page 7-9

7 Controlling Generated Code Partitions

Generate Global Variables from Signals in Model

If you want to generate a global variable in your code, use a global Data Store Memory
block based on a Simulink.Signal object in your model.

Set up a data store in your model by using a Data Store Memory block.
2 Associate a Simulink.Signal object with the data store.

a In the model workspace, define a Simulink.Signal object with the same name
as the data store. Set the storage class of the object to ExportedGlobal or
ImportedExtern.

b Use the Model Data Editor to enable the Data store name must resolve to
Simulink signal object parameter of the Data Store Memory block. To use the
Model Data Editor in a model, select View > Model Data Editor. On the Data
Stores tab, set the Change View drop-down to Code. Enable Resolve for the
Data Store Memory block. For more information, see “Configure Data Properties
by Using the Model Data Editor” (Simulink) .

3 In your model, attach the signals that you want to Data Store Read blocks that read
from the data store and Data Store Write blocks that write to the data store.

The Simulink.Signal object that is associated with the global Data Store Memory
block appears as a global variable in generated code.

Note If you follow this workflow for Rockwell Automation RSLogix 5000 AOIs, the
generated code uses INOUT variables for the global data.

7-2

Control Code Partitions for Subsystem Block

Control Code Partitions for Subsystem Block

Simulink PLC Coder converts subsystems to function block units according to the
following rules:

* Generates a function block for the top-level atomic subsystem for which you generate
code.

* Generates a function block for an atomic subsystem whose Function packaging
parameter is set to Reusable function.

* Inlines generated code from atomic subsystems, whose Function packaging
parameter is set to Inline, into the function block that corresponds to the nearest
ancestor subsystem. This nearest ancestor cannot be inlined.

For code generation from a subsystem with no inputs or outputs, you must set the
Function packaging parameter of the block to Reusable function.

These topics use code generated with CoDeSys Version 2.3.

Control Code Partitions Using Subsystem Block Parameters

You can partition generated code using the following Subsystem block parameters on the
Code Generation tab. See the Subsystem block documentation for details.

* Function packaging

* Function name options

Leave the File name options set to the default, Auto.

Generating Separate Partitions and Inlining Subsystem Code

Use the Function packaging parameter to specify the code format to generate for an

atomic (nonvirtual) subsystem. The Simulink PLC Coder software interprets this
parameter depending on the setting that you choose:

Setting Coder Interpretation

Auto Uses the optimal format based on the type
and number of subsystem instances in the
model.

7 Controlling Generated Code Partitions

Setting Coder Interpretation

Reusable function Generates a function with arguments that
allows reuse of subsystem code when a
model includes multiple instances of the
subsystem.

Nonreusable function The Simulink PLC Coder does not support
Nonreusable function packaging. See,
“Permanent Limitations” on page 11-6.

Inline Inlines the subsystem unconditionally.

For example, in the plcdemo hierarchical virtual subsystem, you can:

* Inline the S1 subsystem code by setting Function packaging to Inline. This setting
creates one function block for the parent with the S1 subsystem inlined.

* Create a function block for the S2 subsystem by setting Function packaging to
Reusable function or Auto. This setting creates two function blocks, one for the
parent, one for S2.

Block Parameters: 51 Block Parameters: 52

Subsystem Subsystem

Select the settings for the subsystem block. To enable parameters for Select the settings for the subsystem block. To enable parameters for

code generation, select 'Treat as atomic unit’. code generation, select 'Treat as atomic unit’.

Main Code Generation Main Code Generation

Function packaging: Inline * || Function packaging: |Reusable function v
Function name options: |Auto v
File name options: | Auto A

Changing the Name of a Subsystem

You can use the Function name options parameter to change the name of a subsystem
from the one on the block label. When the Simulink PLC Coder generates software, it uses
the string you specify for this parameter as the subsystem name. For example, see
plcdemo hierarchical virtual subsystem:

Control Code Partitions for Subsystem Block

Open the S1 subsystem block parameter dialog box.

If the Treat as atomic unit check box is not yet selected, select it.
Click the Code Generation tab.

Set Function packaging to Reusable function.

Set Function name options to User specified.

O U A W N KR

In the Function name field, specify a custom name. For example, type
my _own_subsystem.

Block Parameters: 51 >
[al
Subsystem

Select the settings for the subsystem block. To enable parameters for code
generation, select "Treat as atomic unit'.

Main Code Generation
Function packaging: Reusable function -
Function name options: |User specified -

Function name:

my_own_subsystem

File name options: | Auto -

7 Save the new settings.
8 Generate code for the parent subsystem.
9 Observe the renamed function block.

FUNCTION BLOCK my own subsystem
VAR INPUT

ssMethodType: SINT;

U: LEEAL;

END

TTAD
vAan

7-3

7 Controlling Generated Code Partitions

One Function Block for Atomic Subsystems

The code for plcdemo _simple subsystemis an example of generating code with one
function block. The atomic subsystem for which you generate code does not contain other
subsystems.

FUMCTICHN BLOCK SimpleSubsystem
VAR THPUT

ssMethodType: SINT;

U: LEEAL;

: LEEAL;
END VAR
FAE.
UnitDelay DSTATE: LREAL;
END VAR

CASE ssMethodType OF
S5 _INITIALIZE:
UnitDelay DSTATE := 0.0;

55 STEP:

L] i+ Nalawy’

Y := (U - UnitDelay DSTATE) * 0.5;

UnitDelay DSTATE := Y;

. GLOBAL CONSTANT

55 INITIALIZE: SINT := O;
55 STEP: SINT := 1;
END_VAR

One Function Block for Virtual Subsystems

The plcdemo_hierarchical virtual subsystem example contains an atomic
subsystem that has two virtual subsystems, S1 and S2, inlined. A virtual subsystem does
not have the Treat as atomic unit parameter selected. When you generate code for the
hierarchical subsystem, the code contains only the FUNCTION BLOCK

Control Code Partitions for Subsystem Block

HierarchicalSubsystem component. There are no additional function blocks for the S1

and S2 subsystems.

FUNCTION BLOCK HierarchicalSubsystem

VAR TNPUT

ssMethodType: SINT;

Inl: LEEAL;
InZ: LRERL;
In3: UINT:

Ind: LREEAL;

END _

AR
UnitDelayl DSTATE: LREAL;
UnitDelay DSTATE: LEEAL;
UnitDelay DSTATE i: LREAL;
UnitDelay DSTATE a: LREAL;

END VAR

AR _TEMP
rtbh Gain n: LREARL;

END VAR

S5 INITIALIZE:

UnitDelayl DSTATE := 0.

Multiple Function Blocks for Nonvirtual Subsystems

The plcdemo _hierarchical subsystem example contains an atomic subsystem that
has two nonvirtual subsystems, S1 and S2. Virtual subsystems have the Treat as atomic
unit parameter selected. When you generate code for the hierarchical subsystem, that
code contains the FUNCTION BLOCK HierarchicalSubsystem, FUNCTION BLOCK S1,

and FUNCTION BLOCK S2 components.

7-7

7 Controlling Generated Code Partitions

Function block for Hierarchical Subsystem

FUNCTICN BLOCK HierarchicalSubsystem
VAR TNPUT
ssMethodType: SINT;
Inl: LREAL;
InZ: LRERL;
In3: UINT;
Ind: LREAL;
END VAR
Function block for 1
FUNCTION BLOCK 51
VAR INPUT
ssMethodType: SINT;
U: LEEAL;
END VAR
Function block for 52
FUNCTION BLOCK 52
VAR INPUT
ssMethodType: SINT;
U: LEEAL;
END VAR

Control Code Partitions for MATLAB Functions in Stateflow Charts

Control Code Partitions for MATLAB Functions in
Stateflow Charts

Simulink PLC Coder inlines MATLAB functions in generated code based on your inlining
specifications. To specify whether to inline a function:

1 Right-click the MATLAB function and select Properties.

2 For Function Inline Option, select Inline if you want the function to be inlined.
Select Function if you do not want the function to be inlined. For more information,
see “Specify MATLAB Function Properties in a Chart” (Stateflow).

However, Simulink PLC Coder does not follow your inlining specifications exactly in the
following cases:

» If a MATLAB function accesses data that is local to the chart, it is inlined in generated
code even if you specify that the function must not be inlined.

Explanation: The chart is converted to a function block in generated code. If the
MATLAB function in the chart is converted to a Structured Text function, it cannot
access the data of an instance of the function block. Therefore, the MATLAB function
cannot be converted to a Structured Text function in generated code and is inlined.

» If a MATLAB function has multiple outputs and you specify that the function must not
be inlined, it is converted to a function block in generated code.

Explanation: A Structured Text function cannot have multiple outputs, therefore the
MATLAB function cannot be converted to a Structured Text function.

The following simple example illustrates the different cases. The model used here has a
Stateflow chart that contains four MATLAB functions fcnl to fcn4.

Here is the model.

7 Controlling Generated Code Partitions

I‘I!I'———————hhuE
I‘IHI'———————D-US
(::::}——————i~u4

7-10

o

@)
O

y2

y3

y4

Chart

Here is the Stateflow chart.

Control Code Partitions for MATLAB Functions in Stateflow Charts

MATLAB Function
A y =fcni(u)
entry: y1 =fcnt(ut);

MATLAB Function
y =fcn2(u)

B
entry: y2 = fcn2(u2);

- - MATLAB Function
entry: y3 = fcn3(u3): y =fen3(u)

D MATLAB Function
entry: [y4,ya] = fend(ud); [yy1,yy2] = fend{u)

7-11

7 Controlling Generated Code Partitions

The functions fcnl to fcn4 are defined as follows.

function y = fcnl(u)
y = u+l;

function must be
inlined.

Function Inlining Generated Code
Specification
fcnl: Specify that the fcnl is inlined in the generated

code.

is c3 Chart := Chart IN A;

(* Outport: '<Root>/yl'
incorporates:

* Inport: '<Root>/ul' *)

(* Entry 'A': '<S1>:10' *)

(* MATLAB Function 'fcnl':
'<S1>:1"' *)

(* '<S1>:1:3"' *)

yl :=ul + 1.0;

fcn2:

function y = fcn2(u)
y = u+2;

Specify that the
function must not be
inlined.

fcn2 is not inlined in the generated
code.

is c3 Chart := Chart _IN B;

(* Outport: '<Root>/y2'
incorporates:

* Inport: '<Root>/u2' *)

(* Entry 'B': '<S1>:11' *)

y2 := fcn2(u := u2);

FUNCTION fcn2: LREAL
VAR INPUT

u: LREAL;
END VAR
VAR TEMP
END VAR
(* MATLAB Function

'<S1>:4"' *)

(* '<S1>:4:3' *)
fcn2 :=u + 2.0;
END_ FUNCTION

'fcn2':

7-12

Control Code Partitions for MATLAB Functions in Stateflow Charts

Function Inlining Generated Code
Specification
fcn3: Specify that the fcn3 is inlined in the generated

function y = fcn3(u)

% The function accesses
local data x of
parent chart

y = u+3+x;

d® o° of

function must not be
inlined.

code because it accesses local data
from the Stateflow chart.

is c3 Chart := Chart IN C;

(* Outport: '<Root>/y3'

incorporates:

* Inport: '<Root>/u3' *)
(* Entry 'C': '<S1>:15' *)
(* MATLAB Function 'fcn3':

'<S§1>:9"' *)

(* The function accesses
local data x of parent
chart *)

(* '<S1>:9:4' *)

y3 = (u3 + 3.0) + x;

7-13

7 Controlling Generated Code Partitions

Function

Inlining
Specification

Generated Code

fcn4:

function [yyl,yy2] =
fcnd (u)

u+4;

u+5;

yyl
yy2

Specify that the
function must not be
inlined.

fcn4 is converted to a function
block in the generated code because
it has multiple outputs.

is c3 Chart := Chart IN D;

(* Entry 'D': '<S1>:28' *)
i0 fcnd4(u := u4);

b y4 := 10 fcnd.yyl;
b y5 := 10 fcn4d.yy2;

(* Outport: '<Root>/y4'

incorporates:

* TInport: '<Root>/u4' *)
y4 := b y4;
(* Qutport:
y5 := b_y5;

'<Root>/y5"' *)

FUNCTION BLOCK fcn4
VAR INPUT
u: LREAL;
END VAR
VAR _OUTPUT
yyl: LREAL;
yy2: LREAL;
END VAR
VAR
END VAR
VAR TEMP
END VAR
(* MATLAB Function
'<S1>:26"' *)
(* '<S1>:26:3' *)
yyl = u + 4.0;
(* '<S1>:26:4"' *)
yy2 = u + 5.0;
END_FUNCTION BLOCK

'fcnd':

7-14

Integrating Externally Defined
Symbols

* “Integrate Externally Defined Symbols” on page 8-2
* “Integrate Custom Function Block in Generated Code” on page 8-3

8

Integrating Externally Defined Symbols

Integrate Externally Defined Symbols

8-2

The coder allows you to suppress symbol definitions in the generated code. This
suppression allows you to integrate a custom element, such as user-defined function
blocks, function blocks, data types, and named global variable and constants, in place of
one generated from a Simulink subsystem. You must then provide these definitions when
importing the code into the target IDE. You must:

* Define the custom element in the subsystem for which you want to generate code.

¢ Name the custom element.

* In the Configuration Parameters dialog box, add the name of the custom element to
PLC Code Generation > Symbols > Externally Defined Symbols in the
Configuration Parameters dialog box.

* Generate code.
For a description of how to integrate a custom function block, see “Integrate Custom

Function Block in Generated Code” on page 8-3. For a description of the Externally
Defined Symbols parameter, see “Externally Defined Symbols” on page 13-34.

Integrate Custom Function Block in Generated Code

Integrate Custom Function Block in Generated Code

To integrate a custom function block, ExternallyDefinedBlock, this procedure uses the
example plcdemo _external symbols.
In a Simulink model, add a MATLAB Function block.
Double-click the MATLAB Function block.
In the MATLAB editor, minimally define inputs, outputs, and stubs. For example:
function Y = fcn(U,V)
% Stub behavior for simulation. This block

% is replaced during code generation
Y=U+V;

Change the MATLAB Function block name to ExternallyDefinedBlock.
Create a subsystem from this MATLAB Function block.
Complete the model to look like plcdemo_external symbols.

8-3

matlab:plcdemo_external_symbols
matlab:plcdemo_external_symbols

8 Integrating Externally Defined Symbols

In1

8-4

In1

I Int Out1

In2 y1
/ I

<In1> *
= + v 4
i A
Add Y +
B * >
" Add4 Gain
_ ExternallyDefinedBlock

Y

1

o
L
z

Unit Delay

Open the Configuration Parameters dialog box for the model.

Add ExternallyDefinedBlock to PLC Code Generation > Symbols >
Externally Defined Symbols.

The plcdemo_external symbols model also suppresses K1 and InBus. Add these
symbol names to the Externally Defined Symbols field, separated by spaces or
commas. For other settings, see the plcdemo _external symbols model.

Integrate Custom Function Block in Generated Code

Externally Defined Symbols

ExternallyDefinedBlock InBus K1

10 Save and close your new model. For example, save it as
plcdemo external symbols mine.

11 Generate code for the model.
12 In the generated code, look for instances of ExternallyDefinedBlock.

The reference of ExternallyDefinedBlock is:

VAR

UnitDelay DSTATE: LEEAL;

i0 ExternallyDefinedBlock: ExternallyDefinedBlock;
END VAR

The omission of ExternallyDefinedBlock is:

(* MATLAER Function: '"<51>/ExternallyDefinedBlock' *)
i0 ExternallyDefinedBlock(J := rtb Add, V := rtb_ Addl};
rtb ¥ := i0 ExternallyDefinedBlock.¥;

IDE-Specific Considerations

* “Integrate Generated Code with Siemens IDE Project” on page 9-2

» “Use Internal Signals for Debugging in RSLogix 5000 IDE” on page 9-4
* “Rockwell Automation RSLogix Considerations” on page 9-6

* “Considerations for Siemens IDEs” on page 9-8

9

IDE-Specific Considerations

Integrate Generated Code with Siemens IDE Project

9-2

You can integrate generated code with an existing Siemens SIMATIC STEP 7 or Siemens
TIA Portal project. For more information on:

* How to generate code, see “Generate and Examine Structured Text Code” on page 1-
17.

* The location of generated code, see “Files Generated with Simulink PL.C Coder” on
page 1-23.

Integrate Generated Code with Siemens SIMATIC STEP 7
Projects

1 In the Siemens SIMATIC STEP 7 project, right-click the Sources node and select
Insert New Object > External Source.

2 Navigate to the folder containing the generated code and open the file.
Unless you assigned a custom name, the file is called model name.scl. After you
open the file, a new entry called model name.scl appears under the Sources node.
Double-click the new entry. The generated code is listed in the SCL editor window.
In the SCL editor window, select Options > Customize.
In the customize window, select Create block numbers automatically, and click
OK.
Symbol addresses are automatically generated for Subsystem blocks.

6 In the SCL editor window, compile the model name.scl file for the Subsystem
block.

The new Function Block is now integrated and available for use with the existing Siemens
SIMATIC STEP 7 project.

Integrate Generated Code with Siemens TIA Portal Projects

1 In the Project tree pane, on the Devices tab, under the External source files node
in your project, select Add new external file.

2 Navigate to the folder containing the generated code and open the file.

Integrate Generated Code with Siemens IDE Project

Unless you assigned a custom name, the file is called model name.scl. After you
open the file, a new entry called model name.scl appears under the External
source files node.

Right-click the new entry and select Generate blocks from source.

The Siemens TIA Portal IDE compiles the new file and generates TIA Portal program
blocks from the code. The program blocks appear under the Program blocks node.
They are available for use with the existing Siemens TIA Portal project.

9-3

9

IDE-Specific Considerations

Use Internal Signals for Debugging in RSLogix 5000 IDE

For debugging, you can generate code for test point outputs from the top-level subsystem
of your model. The coder generates code that maps the test pointed output to optional
AOI output parameters for RSLogix 5000 IDEs. In the generated code, the variable tags
that correspond to the test points have the property Required=false. This example
assumes that you have a model appropriately configured for the coder, such as
plcdemo simple subsystem.

9-4

1

Open the plcdemo _simple subsystem model.

plcdemo simple subsystem

In the Configuration Parameters dialog box, set Target IDE to Rockwell RSLogix

5000: AOI.

In the top-level subsystem of the model, right-click the output signal of
SimpleSubsystem and select Properties.

The Signal Properties dialog box is displayed.
On the Logging and accessibility tab, click the Test point check box.

Signal Properties:

x

Signal name: |

Signal name must resolve to Simulink signal object

] show propagated signals

[Log signal data [~ Test point
Logging name

Use signal name

Cancel Help

Legging and accessibility Code Generation ~ Documentation

Apply

Use Internal Signals for Debugging in RSLogix 5000 IDE

5 Click OK.
6 Generate code for the top-level subsystem.
7 Inspect the generated code for the string Required=false.

For more information on signals with test points, see “What Is a Test Point?” (Simulink).

9

IDE-Specific Considerations

Rockwell Automation RSLogix Considerations

9-6

Following are considerations for this target IDE platform.

Add-On Instruction and Function Blocks

The Structured Text concept of function block exists for Rockwell Automation RSLogix
target IDEs as an Add-On instruction (AOI). The Simulink PLC Coder software generates
AQIs for Add-On instruction format, not FUNCTION BLOCK.

Double-Precision Data Types

The Rockwell Automation RSLogix target IDE does not support double-precision data
types. At code generation, the Simulink PLC Coder converts this data type to single-
precision data types in generated code.

Design your model to use single-precision data type (single) as much as possible instead
of double-precision data type (double). If you must use doubles in your model, the
numerical results produced by the generated Structured Text can differ from Simulink
results. This difference is due to double-single conversion in the generated code.

Unsigned Integer Data Types

The Rockwell Automation RSLogix target IDE does not support unsigned integer data
types. At code generation, the Simulink PLC Coder converts this data type to signed
integer data types in generated code.

Design your model to use signed integer data types (int8, int16, int32) as much as
possible instead of unsigned integer data types (uint8, uint16, uint32). Doing so avoids
overflow issues that unsigned-to-signed integer conversions can cause in the generated
code.

Unsigned Fixed-Point Data Types

In the generated code, Simulink PLC Coder converts fixed-point data types to target IDE
integer data types. Because the Rockwell Automation RSLogix target IDE does not
support unsigned integer data types, do not use unsigned fixed-point data types in the
model. For more information about coder limitations for fixed-point data type support, see
“Fixed-Point Data Type Limitations” on page 11-4.

Rockwell Automation RSLogix Considerations

Enumerated Data Types

The Rockwell Automation RSLogix target IDE does not support enumerated data types. At
code generation, the Simulink PLC Coder converts this data type to 32-bit signed integer
data type in generated code.

9

IDE-Specific Considerations

Considerations for Siemens IDEs

9-8

Following are considerations for this target IDE platform.

Double-Precision Floating-Point Data Types

The Siemens SIMATIC STEP 7 target IDE does not support double-precision floating-point
data types. At code generation, the Simulink PLC Coder converts this data type to single-
precision real data types in the generated code. Design your model so that the possible
precision loss of numerical results of the generated code does not change the expected
semantics of the model.

For Siemens PLC devices that support double-precision floating point types, use Siemens
TIA Portal: Double Precision as Target IDE for generating code. The generated
code uses the LREAL type for double-precision floating point types in the model. For more
information, see “Target IDE” on page 13-3.

int8 and Unsigned Integer Types

The SCL language for Siemens IDEs does not support int8 and unsigned integer data
types. At code generation, the Simulink PLC Coder converts int8 and unsigned integer
data types to int16 or int32 in the generated code.

Design your model to use int16 and int32 data types as much as possible instead of int8
or unsigned integer data types. The Simulink numerical results using int8 or unsigned
integer data types can differ from the numerical results produced by the generated
Structured Text.

Design your model so that effects of integer data type conversion of the generated code
do not change the expected semantics of the model.

Unsigned Fixed-Point Data Types

In the generated code, Simulink PLC Coder converts fixed-point data types to target IDE
integer data types. Because the Siemens target IDEs do not support unsigned integer
data types, do not use unsigned fixed-point data types in the model. For more information
about coder limitations for fixed-point data type support, see “Fixed-Point Data Type
Limitations” on page 11-4.

Considerations for Siemens IDEs

Enumerated Data Types

The Siemens SIMATIC STEP 7 target IDE does not support enumerated data types. The
Siemens SIMATIC STEP 7 converts this data type to 16-bit signed integer data type in the
generated code.

INOUT Variables

The Siemens SIMATIC STEP 7 and the TIA Portal single-precision targets do not support
INOUT variables. If your Simulink model contains MATLAB Function blocks withy = f(y)
style in-place variables, coder generates code using normal input and output variables.
However, if the code generation option for the MATLAB Function block is set to use
Reusable function, this conversion is not possible. To fix this issue, rewrite the MATLAB
Function block without using in-place variables or change the block code generation
option to either Auto or Inline.

9-9

Supported Simulink and Stateflow
Blocks

10 Supported Simulink and Stateflow Blocks

Supported Blocks
For Simulink semantics not supported by Simulink PLC Coder, see “Coder Limitations” on
page 11-2.
View Supported Blocks Library
To view a Simulink library of blocks that the Simulink PLC Coder software supports, type

plclib in the Command Window. The coder can generate Structured Text code for
subsystems that contain these blocks. The library window is displayed.

L plclib - Simulink - m| 3
File Edit Wiew Display Diagram Simulation Analysis Code Tools =
@ - | - ¥ » HE E@ I-"';‘\ HE} . O -
O[5 ¢
Model Browser = plclit
v [*a| picib ® |a/picib -
> [Pal simutink ——
”
> [Pal statefiow @
£3]
— Simulink
] Stateflow
W
« |, 3
Ready 100% FixedStepDiscrete

10-2

Supported Blocks

This library contains two sublibraries, Simulink and Stateflow. Each sublibrary contains
the blocks that you can include in a Simulink PLC Coder model.

Supported Simulink Blocks

The coder supports the following Simulink blocks.
Additional Math & Discrete/Additional Discrete
Transfer Fcn Direct Form II

Transfer Fcn Direct Form II Time Varying

Unit Delay Enabled (Obsolete)

Unit Delay Enabled External IC (Obsolete)

Unit Delay Enabled Resettable (Obsolete)

Unit Delay Enabled Resettable External IC (Obsolete)

Unit Delay External IC (Obsolete)

Unit Delay Resettable (Obsolete)

Unit Delay Resettable External IC (Obsolete)

Unit Delay With Preview Enabled (Obsolete)

Unit Delay With Preview Enabled Resettable (Obsolete)
Unit Delay With Preview Enabled Resettable External RV (Obsolete)
Unit Delay With Preview Resettable (Obsolete)

Unit Delay With Preview Resettable External RV (Obsolete)
Commonly Used Blocks

Inport

Bus Creator

10-3

10 Supported Simulink and Stateflow Blocks

Bus Selector
Constant

Data Type Conversion
Demux
Discrete-Time Integrator
Gain

Ground

Logical Operator
Mux

Product

Relational Operator
Saturation

Scope

Subsystem

Inport

Outport

Sum

Switch

Terminator

Unit Delay
Discontinuities

Coulomb and Viscous Friction

10-4

Supported Blocks

Dead Zone Dynamic
Rate Limiter

Rate Limiter Dynamic
Relay

Saturation

Saturation Dynamic
Wrap To Zero

Discrete

Difference

Discrete Transfer Fcn
Discrete Derivative
Discrete FIR Filter
Discrete Filter

Discrete PID Controller
Discrete PID Controller (2 DOF)
Discrete State-Space
Discrete-Time Integrator
Integer Delay

Memory

Tapped Delay

Transfer Fcn First Order

Transfer Fcn Lead or Lag

10-5

10 Supported Simulink and Stateflow Blocks

Transfer Fcn Real Zero
Unit Delay

Zero-Order Hold

Logic and Bit Operations
Bit Clear

Bit Set

Bitwise Operator
Compare To Constant
Compare To Zero

Detect Change

Detect Decrease

Detect Increase

Detect Fall Negative
Detect Fall Nonpositive
Detect Rise Nonnegative
Detect Rise Positive
Extract Bits

Interval Test

Interval Test Dynamic
Logical Operator

Shift Arithmetic

10-6

Supported Blocks

Lookup Tables
Dynamic-Lookup
Interpolation Using Prelookup
PreLookup

n-D Lookup Table
Math Operations
Abs

Add

Assignment

Bias

Divide

Dot Product

Gain

Math Function
Matrix Concatenate
MinMax

MinMax Running Resettable
Permute Dimensions
Polynomial

Product

Product of Elements

Reciprocal Sqrt

10-7

10 Supported Simulink and Stateflow Blocks

Reshape

Rounding Function

Sign

Slider Gain

Sqrt

Squeeze

Subtract

Sum

Sum of Elements
Trigonometric Function
Unary Minus

Vector Concatenate
Model Verification
Assertion

Check Discrete Gradient
Check Dynamic Gap
Check Dynamic Range
Check Static Gap

Check Static Range
Check Dynamic Lower Bound
Check Dynamic Upper Bound

Check Input Resolution

10-8

Supported Blocks

Check Static Lower Bound
Check Static Upper Bound
Model-Wide Utilities
DocBlock

Model Info

Ports & Subsystems
Atomic Subsystem
CodeReuse Subsystem
Enabled Subsystem
Enable

Function-Call Subsystem
Subsystem

Inport

Outport

Signal Attributes

Data Type Conversion
Data Type Duplicate
Signal Conversion
Signal Routing

Bus Assignment

Bus Creator

Bus Selector

10-9

10 Supported Simulink and Stateflow Blocks

Data Store Memory
Demux

From

Goto

Goto Tag Visibility
Index Vector
Multiport Switch
Mux

Selector

Sinks

Display

Floating Scope
Scope

Stop Simulation
Terminator

To File

To Workspace

XY Graph
Sources
Constant

Counter Free-Running

Counter Limited

10-10

Supported Blocks

Enumerated Constant

Ground

Pulse Generator

Repeating Sequence Interpolated

Repeating Sequence Stair

User-Defined Functions

MATLAB Function (MATLAB Function Block)

Fcn

Supported Stateflow Blocks

The coder supports the following Stateflow blocks.

Stateflow
Chart
State Transition Table

Truth Table

Blocks with Restricted Support

Simulink Block Support Exceptions

The Simulink PLC Coder software supports the plclib blocks with the following
exceptions. Also, see “Coder Limitations” on page 11-2 for a list of limitations of the

software.

If you get unsupported fixed-point type messages during code generation, update the
block parameter. Open the block parameter dialog box. Navigate to the Signal
Attributes and Parameter Attributes tabs. Check that the Qutput data type and
Parameter data type parameters are not Inherit: Inherit via internal rule.
Set these parameters to either Inherit: Same as input or a desired non-fixed-point

data type, such as double or int8.

10-11

10 Supported Simulink and Stateflow Blocks

10-12

Stateflow Chart Exceptions

If you receive a message about consistency between the original subsystem and the S-
function generated from the subsystem build, and the model contains a Stateflow chart
that contains one or more Simulink functions, use the following procedure to address the
issue:

1 Open the model and double-click the Stateflow chart that causes the issue.

The chart Stateflow Editor dialog box is displayed.
Right-click in this dialog box.
In the context-sensitive menu, select Properties.

The Chart dialog box is displayed.

4 In the Chart dialog box, navigate to the States When Enabling parameter and
select Held.

5 Click Apply and OK and save the model.
Data Store Memory Block

To generate PLC code for a model that uses a Data Store Memory block, first define a
Simulink.Signal object in the base workspace. Then, in the Signal Attributes tab of
the block parameters, set the data store name to resolve to that Simulink.Signal
object.

For more information, see “Data Stores with Data Store Memory Blocks” (Simulink).
Reciprocal Sqrt Block

The Simulink PLC Coder software does not support the Simulink Reciprocal Sqrt block
signedSqrt and rSqrt functions.

Lookup Table Blocks

Simulink PLC Coder has limited support for lookup table blocks. The coder does not
support:

* Number of dimensions greater than 2

* Cubic spline interpolation method

* Begin index search using a previous index mode

Supported Blocks

* Cubic spline extrapolation method

Note The Simulink PLC Coder software does not support the Simulink Lookup Table
Dynamic block. For your convenience, the plclib/Simulink/Lookup Tables library contains
an implementation of a dynamic table lookup block using the Prelookup and Interpolation

Using Prelookup blocks.

10-13

Limitations

11 Limitations

Coder Limitations

In this section...

“Current Limitations” on page 11-2

“rand Function Support Limitations” on page 11-3
“Workspace Parameter Data Type Limitations” on page 11-3
“Traceability Report Limitations” on page 11-4

“Fixed-Point Data Type Limitations” on page 11-4
“Multirate Model Limitations” on page 11-6

“Permanent Limitations” on page 11-6

Current Limitations

The Simulink PLC Coder software does not support the following Simulink semantics:

* Complex data types

* Model reference

* Stateflow machine-parented data and events
» Stateflow messages

* Limited support for math functions

* Merge block

» Step block

* Clock block

» Signal and state storage classes

» Shared state variables between subsystems
» Virtual buses at the input ports of the top-level Atomic Subsystem block
* For Each Subsystem block

* Variable-size signals and parameters

* Objects defined in the Simulink data dictionary, including model parameters, signals,
and state objects.

* MATLAB System block or system objects

11-2

Coder Limitations

* Width block

Use a MATLAB Function block instead. In the MATLAB function on the block, use the
length function to compute input vector width.

* Cell arrays in MATLAB Function blocks

» In MATLAB Function blocks, only standard MATLAB functions are supported.
Functions from toolboxes are not supported. For the list of standard functions
supported for code generation, see “Functions and Objects Supported for C/C++ Code
Generation — Category List” (Simulink).

* The use of Simulink.CoderInfo Alias name property with Simulink.Parameter
and Simulink.Signal objects.

rand Function Support Limitations

Simulink PLC Coder generates Structured Text code for MATLAB Function blocks that
use rand functions from the library. The rand function is implemented using a pseudo
random number generator that only works with PLC IDEs supporting the uint32 data
type. The software has conformance checks to report diagnostics for incompatible
targets.

Workspace Parameter Data Type Limitations

If the data type of the MATLAB work space parameter value does not match that of the
block parameter used in your model, the value of the variable in the generated code is set
to zero.

If you specify the type of the Simulink.Parameter object by using the DataType
property, use a typed expression when assigning a value to the parameter object. For
example, if the Simulink.Parameter object K1 is used to store a value of the type
single, use a typed expression such as single(0.3) when assigning a value to K1.

K1 = Simulink.Parameter;
K1.Value = single(0.3);
K1.StorageClass = 'ExportedGlobal';
K1l.DataType = 'single';

11-3

11 Limitations

11-4

Traceability Report Limitations
Simulink PLC Coder does not generate a traceability report file when generating Ladder

Diagrams from Stateflow charts. However, traceability report file is generated when
generating Structured Text from Stateflow charts.

Fixed-Point Data Type Limitations

Simulink PLC Coder software supports the fixed-point data type. To generate code for
fixed-point data types, configure block and model parameters as described in this topic.

Note If you do not configure the blocks and models as directed, the generated Structured
Text might:

* Not compile.
* Compile, but return results that differ from the simulation results.

Block Parameters

Properly configure block parameters:

If the block in the subsystem has a Signal Attributes tab, navigate to that tab.
For the Integer rounding mode parameter, select Round.

Clear the Saturate on integer overflow check box.

For the Output data type parameter, select a fixed-point data type.

Click the Data Type Assistant button.

For the Word length parameter, enter 8, 16, or 32.

For the Mode parameter, select Fixed point.

0 N OO U1l A W IN MR

For the Scaling parameter, select Binary point.

Coder Limitations

9

Main Signal Attributes Parameter Attributes |

Qutput minimum: Output maximum:

a 0

Qutput data type: fixdt(1,16,0) =

Data Type Assistant

Mode: Signedness: Word length: 16

Scaling: Binary point ~ | Fraction length: 0

Data type override: IInherit vl [Calculate- Best-Precision Scaling

Eixed-point details

[T] Lock output data type setting against changes by the fixed-point tools

Integer rounding mode: ’Round -

[T] saturate on integer overflow

Click OK.

Be sure to edit the model configuration parameters (see “Model Configuration
Parameters” on page 11-5).

Model Configuration Parameters

Properly configure model configuration parameters:

1

gua A W N

In model Configuration Parameters dialog box, click the Hardware
Implementation node.

For the Device vendor parameter, select Generic.

For the Device type, select Custom.

For the Signed integer division rounds to, select Zero.
For the Number of bits, set char to 16.

11-5

11 Limitations

Embedded hardware (simulation and code generation)

Device vendor: |Generic - | Device type: |Custom
Number of bits Largest atomic size
char: 16 short: 16 int: 32 — e |Char
long: 32 float: 32 double: &4
.) floating-point: |None
native: 32 pointer: |32
Byte ordering: |Unspeciﬁed ~ | Signed integer division rounds to: |Zero

¥| Shift right on a signed integer as arithmetic shift

Emulation hardware (code generation only)

| None

Multirate Model Limitations

To generate Structured Text from a multirate model, you must configure the model as
follows:

* Change any continuous time input signals in the top-level subsystem to use discrete
fixed sample times.

» For the solver, select single-tasking execution.
The B&R Automation Studio IDE is not supported for multirate model code generation.
When you deploy code generated from a multirate model, you must run the code at the

fundamental sample rate.

Permanent Limitations

The Structured Text language has inherent restrictions. As a result, the Simulink PLC
Coder software has the following restrictions:

* The Simulink PL.C Coder software supports code generation only for atomic
subsystems.

* The Simulink PLC Coder software supports automatic, inline, or reusable function
packaging for code generation. Nonreusable function packaging is not supported.

11-6

Coder Limitations

No blocks that require continuous time semantics. This restriction includes continuous
integrators, zero-crossing blocks, physical modeling blocks, and so on.

No pointer data types.
No recursion (including recursive events).
Nonfinite data, for example NaN or Inf, is not supported.

11-7

Functions — Alphabetical List

12 Functions — Alphabetical List

plccoderdemos

Product examples

Syntax

plccoderdemos

Description

plccoderdemos displays the Simulink PLC Coder examples.

Examples

Display Simulink PLC Coder Examples

Enter the following at the command prompt: plccoderdemos

See Also

plcopenconfigset

Introduced in R2010a

12-2

plccoderpref

plccoderpref

Manage user preferences

Syntax

plccoderpref

plccoderpref('plctargetide’)
plccoderpref('plctargetide', preference value)
plccoderpref('plctargetide', 'default')

plccoderpref('plctargetidepaths', 'default')
plccoderpref('plctargetlist')

(1

(1

(1
plccoderpref('plctargetidepaths')

(1

(1
plccoderpref('plctargetlist', targetlist)

Description

plccoderpref displays the current set of user preferences, including the default target
IDE.

plccoderpref('plctargetide’') returns the current default target IDE. This default
can be the target IDE set previously, or the factory default. The factory default is
'codesys23'.

plccoderpref('plctargetide', preference value) sets the default target IDE to
the one that you specify in preference value. This command sets the
preference value to persist as the default target IDE for future MATLAB sessions.

plccoderpref('plctargetide’', 'default') setsthe default target IDE to the
factory default target IDE (' codesys23"').

plccoderpref('plctargetidepaths') returns a 1-by-1 structure of the installation
paths of supported target IDEs.

plccoderpref('plctargetidepaths', 'default') sets the contents of the 1-by-1
structure of the installation paths to the default values.

12-3

12 Functions — Alphabetical List

12-4

plccoderpref('plctargetlist') displays the target IDEs that appear in the reduced
Target IDE list in the Simulink Configuration Parameters dialog box. For more
information, see “Target IDE” on page 13-3 and “Show Full Target List” on page 13-

6.

plccoderpref('plctargetlist', targetlist) sets the target IDEs that appear in
the reduced Target IDE list to the values that you specify in targetlist.

Input Arguments

plctargetide

String directive that specifies the default target IDE.

Value Description

codesys23 3S-Smart Software Solutions CoDeSys Version
2.3 (default) target IDE

codesys33 3S-Smart Software Solutions CoDeSys Version
3.3 target IDE

codesys35 3S-Smart Software Solutions CoDeSys Version
3.5 target IDE

brautomation30 B&R Automation Studio 3.0 target IDE

brautomation40 B&R Automation Studio 4.0 target IDE

generic Generic target IDE

indraworks Rexroth IndraWorks version 13V12 IDE

multiprog50 PHOENIX CONTACT (previously KW) Software
MULTIPROG 5.0 or 5.50 target IDE

omron OMRON Sysmac Studio

plcopen PLCopen XML target IDE

pcworxo0 Phoenix Contact PC WORX 6.0

rslogix5000 Rockwell Automation RSLogix 5000 Series target

IDE for AOI format

rslogix5000 routine

Rockwell Automation RSLogix 5000 Series target
IDE for routine format

plccoderpref

Value Description

step7 Siemens SIMATIC STEP 7 Version 5 target IDE

studio5000 Rockwell Studio 5000 Logix Designer target IDE
for AOI format

studio5000 routine Rockwell Studio 5000 Logix Designer target IDE
for routine format

twincat211 Beckhoff TwinCAT 2.11 target IDE

twincat3 Beckhoff TwinCAT 3 target IDE

tiaportal Siemens TIA Portal

tiaportal double Siemens TIA Portal with support for double
precision (LREAL type)

Default: codesys23
plctargetidepaths

String that specifies the target IDE installation path. Contains a 1-by-1 structure of the
installation paths of supported target IDEs.

codesys23: 'C:\Program Files\3S Software'

codesys33: 'C:\Program Files\3S CoDeSys'

codesys35: 'C:\Program Files\3S CoDeSys'

studio5000: 'C:\Program Files\Rockwell Software'
studio5000 routine: 'C:\Program Files\Rockwell Software'
rslogix5000: 'C:\Program Files\Rockwell Software'
rslogix5000 routine: 'C:\Program Files\Rockwell Software'
brautomation30: 'C:\Program Files\BrAutomation'
brautomation40: 'C:\Program Files\BrAutomation'
multiprog50: 'C:\Program Files\KW-Software\MULTIPROG 5.0'
pcworx60: 'C:\Program Files\Phoenix Contact\Software Suite 150'
step7: 'C:\Program Files\Siemens'

tiaportal: 'C:\Program Files\Siemens\Automation'
tiaportal double: 'C:\Program Files\Siemens\Automation'
plcopen: ''

twincat21l: 'C:\TwinCAT'

twincat3: 'C:\TwinCAT'

generic: "'

indraworks: "'

omron: "'

default

String that sets your preferences to the factory default.

12-5

12 Functions — Alphabetical List

plctargetlist

Cell array of strings. Each string specifies a target IDE. You can specify any target IDE
that is available for the plctargetide argument.

Use the string default to reset the reduced Target IDE list.

Examples

Return Current Default Target IDE
plccoderpref('plctargetide")

ans =
'rslogix5000'

Set rslogix5000 as New Default Target IDE
plccoderpref('plctargetide’, 'rslogix5000')

ans =
'rslogix5000'

See Installation Paths of Supported Target IDEs

Assume that you have previously changed the installation path of the CoDeSys 2.3 target
IDE. Return the current target IDE installation paths.

plccoderpref('plctargetidepaths')

ans = struct with fields:
codesys23: 'E:/hub/hub _share/share/apps/3S-Software/CoDeSys/v2.3"
codesys33: 'C:\Program Files\3S CoDeSys'
codesys35: 'C:\Program Files\3S CoDeSys'
studio5000: '
studio5000 routine:
rslogix5000: "'

12-6

plccoderpref

rslogix5000 routine:

brautomation30: 'C:\Program Files\BrAutomation'
brautomation40: 'C:\Program Files\BrAutomation'
multiprog50: 'C:\Program Files\KW-Software\MULTIPROG 5.0'
pcworx60: 'C:\Program Files\Phoenix Contact\Software Suite 150'
step7: 'C:\Program Files\Siemens'
tiaportal: 'C:\Program Files\Siemens\Automation'
tiaportal double: 'C:\Program Files\Siemens\Automation'
plcopen: ''
twincat211l: 'C:\TwinCAT'
twincat3: 'C:\TwinCAT'
generic: "'
indraworks: "'
omron: "'

Customize Reduced Target IDE List

If you disable Show full target list, the drop down for Target IDE shows only a subset
of the supported IDEs. Customize this reduced list to contain only the IDEs CoDeSys 2.3
and Rockwell Automation RSLogix 5000 Series for AOI format.

targetlist = {'codesys23', 'rslogix5000'};
plccoderpref('plctargetlist',targetlist)

ans = 1x2 cell array
{'codesys23'} {'rslogix5000"'}

Reset Reduced Target IDE List
Reset the reduced Target IDE list to the default subset.
plccoderpref('plctargetlist', 'default')

1x5 cell array

ans =
{'codesys23'} {'studio5000'} {'step7'} {'omron'} {'plcopen'}

12-7

12 Functions — Alphabetical List

Append Another IDE to Default Reduced Target IDE List
Append the IDE CoDeSys 3.5 to the default reduced Target IDE list.

plccoderpref('plctargetlist', [plccoderpref('plctargetlist', 'default') 'codesys35'])

ans = 1x6 cell array
Columns 1 through 5

{'codesys23'} {'studio5000'} {'step7'} {'omron'} {'plcopen'}
Column 6

{'codesys35"'}

Append Another IDE to Current Reduced Target IDE List

Append the IDE CoDeSys 3.5 to the current reduced Target IDE list.
plccoderpref('plctargetlist', [plccoderpref('plctargetlist') 'codesys35'])

ans = 1x6 cell array
Columns 1 through 5

{'codesys23'} {'studio5000'} {'step7'} {'omron'} {'plcopen'}
Column 6

{'codesys35'}

Tips

Use the Simulink Configuration Parameters dialog box to change the installation path of a
target IDE (Target IDE Path).

12-8

plccoderpref

Introduced in R2010a

12-9

12 Functions — Alphabetical List

12-10

plcgeneratecode

Generate Structured Text for subsystem

Syntax

generatedfiles = plcgeneratecode(subsystem)

Description

generatedfiles = plcgeneratecode(subsystem) generates Structured Text for
the specified atomic subsystem in a model. subsystem is the fully qualified path name of
the atomic subsystem. generatedfiles is a cell array of the generated file names. You
must first load or start the model.

Examples

Generate Structured Text Code for Subsystem

Open or load the model containing the subsystem.

plcdemo simple subsystem

plcgeneratecode

LA

H.\V o] i (D

SimplaSubsystem

This introductory model shows the code generated for a simple subsystem consisting of
a few basic Simulink blocks. To build the subsystem, right-click on the subsystem block and
select PLC Code > Generate Code for Subsystem.

The Diagnostic Viewer displays hyperlinks to the generated code files. click the links to view the generated files.

Copyright 2009-2018 The MathWorks, Inc.

Generate code for the subsystem, plcdemo simple subsystem/SimpleSubsystem.
generatedFiles = plcgeneratecode('plcdemo simple subsystem/SimpleSubsystem');

PLC code generation successful for 'plcdemo simple subsystem/SimpleSubsystem'.

Generated files:
.\plcsrc\plcdemo simple

See Also

plcopenconfigset

Introduced in R2010a

12-11

12 Functions — Alphabetical List

plcopenconfigset

Open Configuration Parameters dialog box for subsystem

Syntax

plcopenconfigset(subsystem)

Description

plcopenconfigset(subsystem) opens the Configuration Parameters dialog box for
the specified atomic subsystem in the model. subsystem is the fully qualified path name of
the atomic subsystem.

Examples

Open Configuration Parameters for Subsystem

Open the model containing the subsystem.

open_system('plcdemo_simple subsystem')

12-12

plcopenconfigset

LA

vl Y 1
r\f double D

SimplaSubsystem

This introductory model shows the code generated for a simple subsystem consisting of
a few basic Simulink blocks. To build the subsystem, right-click on the subsystem block and
select PLC Code > Generate Code for Subsystem.

The Diagnostic Viewer displays hyperlinks to the generated code files, click the links to view the generated files.

Copyright 2009-2018 The MathWorks, Inc.

Open the Configuration Parameters dialog box for the subsystem,
plcdemo simple subsystem/SimpleSubsystem.

plcopenconfigset('plcdemo simple subsystem/SimpleSubsystem"')

See Also

plcgeneratecode

Introduced in R2010a

12-13

12 Functions — Alphabetical List

12-14

plccheckforladder

Check whether Stateflow chart is ready for Ladder Diagram code generation

Syntax

plccheckforladder(chartPath)

Description

plccheckforladder(chartPath) checks whether a Stateflow chart is ready for
Ladder Diagram code generation. If the chart has properties that do not allow Ladder
Diagram code generation on page 3-19, the function shows errors in the Diagnostic
Viewer window.

Examples

Preparation of Stateflow Chart for Ladder Diagram Code Generation
Open the model plcdemo_ladder three aspect.
open_system('plcdemo_ladder three aspect')

The model contains a subsystem Subsys, which contains a Stateflow chart, 3Aspect.
Save the model elsewhere with the name plcdemo ladder three aspect copy.

Enable super step semantics for the chart. In the chart properties, select Enable Super
Step Semantics.

Check whether the Stateflow chart is ready for Ladder Diagram code generation.
plccheckforladder('plcdemo ladder three aspect copy/Subsys/3Aspect')

You see the following error message in the Diagnostic Viewer window:

Chart must not have superstep semantics enabled in Objects: 'Subsys/3Aspect'’

plccheckforladder

Prepare the chart for Ladder Diagram code generation.

plcprepareforladder('plcdemo ladder three aspect copy/Subsys/3Aspect')

Check again whether the chart is ready for Ladder Diagram code generation.

plccheckforladder('plcdemo ladder three aspect copy/Subsys/3Aspect')

There are no more error messages. The function plcprepareforladder has disabled
super step semantics for the chart.

Input Arguments

chartPath — Full path name of the Stateflow chart
character vector

Full path name of the Stateflow chart relative to the top level Simulink model, specified as
a character vector. To obtain the full path, select the Stateflow chart in your model and
use the gcb function.

Example: gcb, 'ThreeAspectAutoSignal/Subsystem/AutoSignalChart'

See Also

plcgenerateladder | plcprepareforladder

Topics

“Prepare Chart for Ladder Diagram Generation” on page 3-6

“Generate Ladder Diagram Code from Stateflow Chart” on page 3-10

“Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram” on page 3-15
“Ladder Diagram Generation for PLC Controllers” on page 3-2

“Supported IDE Platforms” on page 1-6

Introduced in R2016b

12-15

12 Functions — Alphabetical List

12-16

plcprepareforladder

Change some Stateflow chart properties to enable Ladder Diagram code generation

Syntax

plcprepareforladder(chartPath)

Description

plcprepareforladder(chartPath) changes certain properties of a Stateflow chart so
that the chart is ready for Ladder Diagram code generation. The following properties are
changed:

* The data types of inputs and outputs are changed to Boolean.
* The action language of the chart is changed to C.
* Super step semantics and chart initialization at execution are disabled.

Examples

Preparation of Stateflow Chart for Ladder Diagram Code
Generation

Open the model plcdemo ladder three aspect.
open_system('plcdemo ladder three aspect')

The model contains a subsystem Subsys, which contains a Stateflow chart, 3Aspect.
Save the model elsewhere with the name plcdemo ladder three aspect copy.

Enable super step semantics for the chart. In the chart properties, select Enable Super
Step Semantics.

Check whether the Stateflow chart is ready for Ladder Diagram code generation.

plcprepareforladder

plccheckforladder('plcdemo ladder three aspect copy/Subsys/3Aspect')

You see the following error message in the Diagnostic Viewer window:

Chart must not have superstep semantics enabled in Objects: 'Subsys/3Aspect
Prepare the chart for Ladder Diagram code generation.
plcprepareforladder('plcdemo ladder three aspect copy/Subsys/3Aspect')
Check again whether the chart is ready for Ladder Diagram code generation.

plccheckforladder('plcdemo ladder three aspect copy/Subsys/3Aspect')

There are no more error messages. The function plcprepareforladder has disabled
super step semantics for the chart.

Tips
» Before you use this function, make a backup copy of your model because the function
changes chart properties.

* The function does not change all properties that would allow for Ladder Diagram code
generation. You must explicitly change certain properties. For the full list of chart
properties that are not allowed, see “Restrictions on Stateflow Chart for Ladder
Diagram Generation” on page 3-19.

Input Arguments

chartPath — Full path name of the Stateflow chart
character vector

Full path name of the Stateflow chart relative to the top level Simulink model, specified as
a character vector. To obtain the full path, select the Stateflow chart in your model and
use the gcb function.

Example: gcb, 'ThreeAspectAutoSignal/Subsystem/AutoSignalChart'

See Also
plccheckforladder | plcgenerateladder

12-17

12 Functions — Alphabetical List

Topics
“Prepare Chart for Ladder Diagram Generation” on page 3-6
“Generate Ladder Diagram Code from Stateflow Chart” on page 3-10

“Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram” on page 3-15
“Ladder Diagram Generation for PLC Controllers” on page 3-2
“Supported IDE Platforms” on page 1-6

Introduced in R2016b

12-18

plcgenerateladder

plcgenerateladder

Generate Ladder Diagram code from Stateflow chart

Syntax

plcgenerateladder(chartPath)
plcgenerateladder(chartPath,Name,Value)

Description

plcgenerateladder(chartPath) generates code from a Stateflow chart that you can
import to an IDE such as CODESYS 3.5 and view as a ladder diagram.

plcgenerateladder(chartPath,Name,Value) uses additional options specified by
one or more Name, Value pair arguments. For instance, you can create a validation model
or test bench to compare the generated Ladder Diagram code against the original
Stateflow chart.

Examples

Generate Ladder Diagram Code from Stateflow Chart

Load the model, plcdemo ladder three aspect. The model contains a subsystem
Subsys, which contains a Stateflow chart, 3Aspect.

load system('plcdemo ladder three aspect')

Specify the target IDE as CODESYS 3.5 or as a Rockwell Automation AOI.

set param('plcdemo ladder three aspect', 'PLC TargetIDE', 'codesys35')

Generate Ladder Diagram code from the Stateflow chart.

plcgenerateladder('plcdemo ladder three aspect/Subsys/3Aspect')

12-19

12 Functions — Alphabetical List

12-20

Conformance check results written to file : plcsrc\plcdemo ladder three aspect Conform:
Textual ladder logic equations written to file : plcsrc\plcdemo ladder three aspect Eq
Generating xml representation of the ladder equations

PLC code generation successful for 'plcdemo ladder three aspect/Subsys/3Aspect’.

Generated files:
plcsrc\plcdemo ladder three aspect.xml

ans Ix3 cell array

{'plcsrc\plcdemo ...'} {'plcsrc\plcdemo ..."'} {'plcsrc\plcdemo ..."'}

If code generation is successful, three files are generated in the subfolder plcsrc of your
current folder:

* ModelName Equations.txt : Text file containing the Ladder Diagram code.

* ModelName.xml : File containing the Ladder Diagram code in a format suitable for
import. You use this file to import the code to your IDE and view the ladder diagram.
The format is XML for CODESYS 3.5. For other target IDEs, the file uses an
appropriate format suitable for importing.

* ModelName ConformanceChecks.txt : Text file showing the result of conformance
checks on the Stateflow chart. The conformance checks determine if the Stateflow
chart is ready for generation of Ladder Diagram code. If code generation fails, this file
lists the conformance checks that were not satisfied.

Generate Ladder Diagram Code with Testbench from Stateflow Chart

Load the model plcdemo ladder three aspect, which contains a Stateflow chart.

load system('plcdemo ladder three aspect')

Generate Ladder Diagram code from the Stateflow chart, 3Aspect, along with a test
bench.

plcgenerateladder('plcdemo ladder three aspect/Subsys/3Aspect’,
'GenerateTestBench', 'on')

Conformance check results written to file : plcsrc\plcdemo ladder three aspect Conform:
Textual ladder logic equations written to file : plcsrc\plcdemo ladder three aspect Eq
Generating xml representation of the ladder equations

PLC code generation successful for 'plcdemo ladder three aspect/Subsys/3Aspect’.

plcgenerateladder

Generated files:
plcsrc\plcdemo ladder three aspect.xml

ans = 1x3 cell array
{'plcsrc\plcdemo ...'} {'plcsrc\plcdemo ...'} {'plcsrc\plcdemo ...'}

You can import the Ladder Diagram code and the test bench together to a target IDE such
as CODESYS 3.5. In the IDE, you can validate the ladder diagram against the test bench.

Input Arguments

chartPath — Full path name of the Stateflow chart
character vector

Full path name of the Stateflow chart relative to the top level Simulink model, specified as
a character vector. To obtain the full path, select the Stateflow chart in your model and
use the gcb function.

The Stateflow chart must have these properties:

* The inputs and outputs to the chart must be Boolean. These inputs and outputs
correspond to the input and output terminals of your PLC.
* Each state of the chart must correspond to a chart output.

* The expressions controlling the transition between states must involve only Boolean
operations between the inputs.

For instance, in the following chart, c1, c2, ¢3, and c4 are Boolean inputs to the model.
Al, A2, A3, and A4 are Boolean outputs from the model.

12-21

12 Functions — Alphabetical List

12-22

[c4d]

T 3
\
\-\.
\ [c2]
A3 T _fA2
. lc3]

Some advanced Stateflow features on page 3-19 are not supported because of inherent
restrictions in ladder logic semantics. See the full list of unsupported features.

Example: gcb, 'ThreeAspectAutoSignal/Subsystem/AutoSignalChart'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: 'GenerateTestBench', 'on', 'PLC OutputDir', 'laddereqn' generates
test bench code in addition to the ladder diagram and places the generated files in the
subfolder laddereqgn of the current working folder.

GenerateTestBench — Generate test bench for validation
'off' (default) | 'on'

Specify whether a test bench must be generated.

You can import the Ladder Diagram code and the test bench together to a target IDE such
as CODESYS 3.5. In the IDE, you can validate the ladder diagram against the test bench.

plcgenerateladder

InsertGuardResets — Add reset coils to safeguard against multiple active

states
"off' (default) | 'on'

In the ladder diagram, when the output coil corresponding to the active state is turned
on, reset coils can be used to force deactivation of other states. The reset coils act as a
safeguard against multiple states being simultaneously active. Specify whether the reset
coils must be generated.

If you do not enable this option, each output is a coil that represents a state in the
chart.

The following figure shows an output of the diagram when imported into the
CODESYS 3.5 IDE. The output coil represents a state Al in the chart. When the state
is active, the coil receives power.

A1 new

il 0]

If you enable this option, each output is a coil that represents a state of the chart. The
output is also coupled with reset coils that represent the other states. When a
particular state is active, the reset coils force deactivation of the other states.

The following figure shows an output in the ladder diagram when viewed in the
CODESYS 3.5 IDE. The output coil represents a state Al. To avoid multiple states from
being simultaneously active, the signal that turns the coil on also turns on the reset
coils associated with the other states A2, A3, and A4.

L ()
I
S—

—=)

12-23

12 Functions — Alphabetical List

12-24

GenerateValidationModel — Generate model with Ladder Diagram code for
validation
"off' (default) | 'on'

Specify whether a validation model must be generated. You can use the validation model
to compare the generated Ladder Diagram code against the original Stateflow chart.

The validation model has two Subsystem blocks:

* The first block has the original Stateflow Chart.
* The second block has the Ladder Diagram code in a MATLAB Function block.

When you simulate this validation model, for all inputs, the software verifies the output of
the second block against the first block. If the output of the second Subsystem block does
not match the first, the simulation fails.

PLC_OutputDir — Path relative to current folder where generated files are
placed
"plcsrc' (default) | character vector

Path relative to the current folder, specified as a character vector. The generated code
files are placed in this subfolder. If you do not specify a value, the subfolder plcsrc is
used.

The output folder must not have the same name as the current folder. For instance, if you
do not specify an output folder, plcsrc is used. If the current folder is also plcsrc, an
eITor O0CCUTS.

Example: 'out\plccode’

See Also
plccheckforladder | plcprepareforladder

Topics

“Prepare Chart for Ladder Diagram Generation” on page 3-6

“Generate Ladder Diagram Code from Stateflow Chart” on page 3-10

“Import Ladder Diagram Code to CODESYS 3.5 IDE and Validate Diagram” on page 3-15
“Ladder Diagram Generation for PLC Controllers” on page 3-2

“Supported IDE Platforms” on page 1-6

plcgenerateladder

Introduced in R2016b

12-25

12 Functions — Alphabetical List

plcimportladder

Import ladder diagram into a Simulink subsystem

Syntax

genmdlname = plcimportladder(filepath,program name, routine name)

Description

genmdlname = plcimportladder(filepath,program name, routine name)
generates a Simulink representation of the ladder diagram in the L5X file created using
Rockwell Automation IDEs such as RSLogix 5000 and Studio 5000.

Examples

Import Simple Ladder Diagram into Simulink

The following example demonstrates how to import a simple ladder diagram from an L5X
file (simple ladder.L5X) into the Simulink environment. The ladder L5X file was
created using RSLogix 5000 IDE and contains contacts and coils representing motor and
lights. The following is a snapshot of the ladder structure.

L_\]\rr:i l;qn_lr'

Light1 Light2

Light1

Use the plcladderimport function to import the ladder into Simulink. For this example,
the program Name of the ladder is MainProgram and the MainRoutineName is
MainRoutine.

12-26

plcimportladder

plcimportladder('simple ladder.L5X"', '"MainProgram', "MainRoutine")

The model imported into Simulink has blocks that implement the functionality of the

contacts and coils.

Pwer Rail Start e
Switch_A Lightl Rung1
’ .
Rung2 Start, Light1 Light2 Rung2
— G
Light2 Motor
Rung3 Scaﬂa - Rung3

—:

Pwer Rail EndI

Input Arguments

filepath — Full file path
character vector

Specifies the relative or absolute path to the ladder L5X file, exported from the Rockwell

Automation IDEs.

program_name — Program or AOl name

character vector

Specifies the name of the AddOnInstruction tag (AOI tag) or the ProgramName tag

containing the ladder logic.

12-27

12 Functions — Alphabetical List

12-28

routine_name — Routine Name
character vector

Specifies the name of the ladder logic routine structure.

Output Arguments

genmdlname — Simulink model name
character array

Specifies the name of the generated Simulink model.

See Also

plcgeneratecode | plcgenerateladder | plcopenconfigset

Topics
“Import Ladder Diagram into Simulink” on page 3-22
“Import L5X Ladder Files into Simulink” on page 3-25

Introduced in R2018a

plcdispextmodedata

plcdispextmodedata

Display the external mode logging data

Syntax

plcdispextmodedata(filename)

Description

plcdispextmodedata(filename) displays logging data information contained in the
filename MAT-file on the MATLAB command window. The OPC Toolbox™ is required to
run the external mode visualization.

Examples

Display Logging Data Information

The following example reads the logging data information stored in plc_log data.mat
and displays it on the command window.

plcdispextmodedata('plc log data.mat')

Log
#1:
#2:
#3:
#4:
#5:
#6:
#7:
#8:
#9:
#10:
#11:
#12:

data:

Y1: LREAL

Y2: LREAL

Y3: LREAL

io Chart.out: DINT

io Chart.ChartMode: DINT
io Chart.State A: BOOL
io Chart.State B: BOOL
io Chart.State C: BOOL
io Chart.State D: BOOL

io Chart.is active c3 Subsystem:

io MATLABFunction.y: LREAL
io MATLABFunction.i: LREAL

USINT

12-29

12 Functions — Alphabetical List

#13: io Sl.y: LREAL
#14: io Sl.UnitDelay DSTATE: LREAL
#15: 11 S1.y: LREAL
#16: 11 S1.UnitDelay DSTATE: LREAL

Input Arguments

filename — Name of the MAT-file
character vector

Name of the MAT-file containing the logging information.

See Also

plcgeneratecode | plcrunextmode

Topics
“External Mode Logging” on page 14-2
“Generate Structured Text Code with Logging Instrumentation” on page 14-3

“Use the Simulation Data Inspector to Visualize and Monitor the Logging Data” on page
14-7

Introduced in R2018a

12-30

plcrunextmode

plcrunextmode

Run external mode visualization

Syntax
plcrunextmode(opc _host,target ide,mdl name,log file)
plcrunextmode(,idx list)
plcrunextmode(,name list)

Description

plcrunextmode(opc _host,target ide,mdl name,log file) runs external mode
visualization using the settings specified in the arguments. All the logged signals are
displayed in the Simulation Data Inspector.

plcrunextmode (,1dx_list) runs external mode visualization and displays only
the logged signals 1dent1ﬁed by the indices in the idx_ list.

plcrunextmode (,hame_list) runs external mode visualization and displays only
the logged signals 1dent1ﬁed by the names in the name_1list.

Examples

Visualize Logging Data

The following example uses plcrunextmode to connect to an OPC server and stream log
data in to Simulink Data Inspector.

plcrunextmode ('localhost', 'studio5000', 'ext demol', 'plc log data.mat');

12-31

12 Functions — Alphabetical List

« @0 B @

(ONE - N

Input Arguments

opc_host — Host address
character vector

Host address of the OPC server.

Example: 'localhost'

target_ide — Target IDE string
character vector

Specifies the name of the PLC target IDE.
Example: 'studio5000'

mdl_name — Simulink model name
character vector

Specifies the Simulink model for which the code was generated with logging
instrumentation.

Example: 'extmode demo'

log_file — Logging data MAT-file
character vector

Full file path of the logging data MAT-file.

12-32

plcrunextmode

Example: 'C:\plc_log data.mat'

idx_list — Index list of logged data
integer vector

The index vector specifying the indices of the logged data signals to display. This
argument is optional.
Example: [1 2 3]

name_list — Name list of the logged data
vector

The name vector specifying the names of the logged data signals to display. This
argument is optional.

Example: {'Y1', 'Y2', 'i0 S1.Y'}

See Also

plcdispextmodedata | plcgeneratecode

Topics
“External Mode Logging” on page 14-2
“Generate Structured Text Code with Logging Instrumentation” on page 14-3

“Use the Simulation Data Inspector to Visualize and Monitor the Logging Data” on page
14-7

Introduced in R2018a

12-33

Configuration Parameters for
Simulink PLC Coder Models

* “PLC Coder: General” on page 13-2

+ “PLC Coder: Comments” on page 13-13

* “PLC Coder: Optimization” on page 13-18

* “PLC Coder: Symbols” on page 13-27
“PLC Coder: Report” on page 13-37

13 Configuration Parameters for Simulink PLC Coder Models

PLC Coder: General

& Configuration Parameters: plederno_simple_subsyster/Configuration (Active) —

Q

Solver General options
Data Import/Export
Math and Data Types
Diagnostics Show full target list
Hardware Implementation
Model Referencing
Simulation Target

Target IDE: Phoenix Contact PC WORX 6.0 hd

L

Target IDE Path: C:\Program Files\Phoenix Contact\Software Sui

Code Output Directory: |./plcsrc

HDL Code Generation Target specific options
Design Verifier

¥ PLC Code Generation
Comments |:| Emit Datatype worksheet tags

L4
» Coverage
4
4
Generate functions instead of function block

Optimization
Symbols
Report

OK Cancel Help

Code Generation [] Generate testbench for subsystem Generate code...

Apply

In this section...

“PLC Coder: General Tab Overview” on page 13-3
“Target IDE” on page 13-3

“Show Full Target List” on page 13-6

“Target IDE Path” on page 13-7

“Code Output Directory” on page 13-9

“Generate Testbench for Subsystem” on page 13-9

13-2

PLC Coder: General

In this section...

“Generate Functions Instead of Function Block” on page 13-10
“Emit Datatype Worksheet Tags for PCWorx” on page 13-11
“Aggressively Inline Structured Text Function Calls” on page 13-12

PLC Coder: General Tab Overview

Set up general information about generating Structured Text code to download to target
PLC IDEs.

Configuration
To enable the Simulink PLC Coder options pane, you must:

1 Create a model.

2 Add either an Atomic Subsystem block, or a Subsystem block for which you have
selected the Treat as atomic unit check box.

3 Right-click the subsystem block and select PLC Code > Options.
Tip

* In addition to configuring parameters for the Simulink PL.C Coder model, you can also
use this dialog box to generate Structured Text code and test bench code for the
Subsystem block.

» Certain options are target-specific and are displayed based on the selection for Target
IDE.

See Also
“Prepare Model for Structured Text Generation” on page 1-9

“Generate Structured Text from the Model Window” on page 1-17

Target IDE

Select the target IDE for which you want to generate code. This option is available on the
PLC Code Generation pane in the Configuration Parameters dialog box.

13-3

13 Configuration Parameters for Simulink PLC Coder Models

The default Target IDE list shows the full set of supported targets. See “Show Full Target
List” on page 13-6.

To see a reduced subset of targets, disable the option Show full target list. To customize
this list and specify IDEs that you use more frequently, use the plccoderpref function.

For version numbers of supported IDEs, see “Supported IDE Platforms” on page 1-6.
Settings
Default: 3S CoDeSys 2.3

3S CoDeSys 2.3

Generates Structured Text (IEC 61131-3) code for 3S-Smart Software Solutions
CoDeSys Version 2.3.

3S CoDeSys 3.3

Generates Structured Text code in PLCopen XML for 3S-Smart Software Solutions
CoDeSys Version 3.3.

3S CoDeSys 3.5

Generates Structured Text code in PLCopen XML for 3S-Smart Software Solutions
CoDeSys Version 3.5.

B&R Automation Studio 3.0

Generates Structured Text code for B&R Automation Studio 3.0.
B&R Automation Studio 4.0

Generates Structured Text code for B&R Automation Studio 4.0.
Beckhoff TwinCAT 2.11

Generates Structured Text code for Beckhoff TwinCAT 2.11 software.
Beckhoff TwinCAT 3

Generates Structured Text code for Beckhoff TwinCAT 3 software.
KW-Software MULTIPROG 5.0

Generates Structured Text code in PLCopen XML for PHOENIX CONTACT (previously
KW) Software MULTIPROG 5.0 or 5.50.

Phoenix Contact PC WORX 6.0
Generates Structured Text code in PLCopen XML for Phoenix Contact PC WORX 6.0.

13-4

PLC Coder: General

Rockwell RSLogix 5000: AOI

Generates Structured Text code for Rockwell Automation RSLogix 5000 using Add-On
Instruction (AOI) constructs.

Rockwell RSLogix 5000: Routine

Generates Structured Text code for Rockwell Automation RSLogix 5000 routine
constructs.

Rockwell Studio 5000: AOI

Generates Structured Text code for Rockwell Automation Studio 5000 Logix Designer
using Add-On Instruction (AOI) constructs.

Rockwell Studio 5000: Routine

Generates Structured Text code for Rockwell Automation Studio 5000 Logix Designer
routine constructs.

Siemens SIMATIC Step 7

Generates Structured Text code for Siemens SIMATIC STEP 7.
Siemens TIA Portal

Generates Structured Text code for Siemens TIA Portal.
Siemens TIA Portal: Double Precision

Generates Structured Text code for Siemens TIA Portal. The code uses LREAL type for
double data type in the model and can be used on Siemens PLC devices that support
the LREAL type.

Generic

Generates a pure Structured Text file. If the target IDE that you want is not available
for the Simulink PLC Coder product, consider generating and downloading a generic
Structured Text file.

PLCopen XML

Generates Structured Text code formatted using PLCopen XML standard.
Rexroth Indraworks

Generates Structured Text code for Rexroth IndraWorks version 13V12 IDE.
OMRON Sysmac Studio

Generates Structured Text code for OMRON® Sysmac® Studio Version 1.04, 1.05, or
1.09.

13-5

13 Configuration Parameters for Simulink PLC Coder Models

13-6

Tips

* Rockwell Automation RSLogix 5000 routines represent the model hierarchy using
hierarchical user-defined types (UDTs). UDT types preserve model hierarchy in the
generated code.

* The coder generates code for reusable subsystems as separate routine instances.
These subsystems access instance data in program tag fields.

Command-Line Information

Parameter: PLC_TargetIDE

Type: string

Value: 'codesys23' | 'codesys33' | 'codesys35' | 'rslogix5000"' |
'rslogix5000 routine' | 'studio5000' | 'studio5000 routine' |
'brautomation30' | 'brautomation40' | 'multiprog50' | 'pcworx60' | 'step7’
| 'plcopen’' | 'twincat21l' | 'twincat3' | 'generic' | 'indraworks' | 'omron' |
'tiaportal' | 'tiaportal double'

Default: 'codesys23'

See Also

“Generate Structured Text from the Model Window” on page 1-17

Show Full Target List

View the full list of supported target IDEs in the Target IDE drop-down list. For more
information, see “Target IDE” on page 13-3. This option is available on the PLC Code
Generation pane in the Configuration Parameters dialog box.

Settings
Default: On

41 On

The Target IDE list displays the full set of supported IDEs. For more information, see
“Supported IDE Platforms” on page 1-6.

Off

The Target IDE list displays only the more commonly used IDEs. The default subset
contains the following IDEs:

PLC Coder: General

* codesys23 — 3S-Smart Software Solutions CoDeSys Version 2.3 (default) target
IDE

* studio5000 — Rockwell Automation Studio 5000 Logix Designer target IDE for
AOI format

* step7 — Siemens SIMATIC STEP 7 target IDE
* omron — OMRON Sysmac Studio
* plcopen — PLCopen XML target IDE

You can customize the entries in the reduced Target IDE list by using the
plccoderpref function.

Command-Line Information
Parameter: PLC ShowFullTargetList
Type: string

Value: 'on' | 'off'

Default: 'on'

You can change the contents of the reduced Target IDE list using the plccoderpref
function. See plccoderpref.

Target IDE Path

Specify the target IDE installation path. The path already specified is the default
installation path for the target IDE. Change this path if your IDE is installed in a different
location. This option is available on the PLC Code Generation pane in the Configuration
Parameters dialog box.

Settings
Default: C:\Program Files\3S Software

C:\Program Files\3S Software

Default installation path for 3S-Smart Software Solutions CoDeSys software Version
2.3.

C:\Program Files\3S CoDeSys

Default installation path for 3S-Smart Software Solutions CoDeSys software Version
3.3 and 3.5.

13-7

13 Configuration Parameters for Simulink PLC Coder Models

13-8

C:\Program Files\BrAutomation

Default installation path for B&R Automation Studio 3.0 and 4.0 software.
C:\TwinCAT

Default installation path for Beckhoff TwinCAT 2.11 and 3 software.
C:\Program Files\KW-Software\MULTIPROG 5.0

Default installation path for PHOENIX CONTACT (previously KW) Software
MULTIPROG 5.0 software. For MULTIPROG 5.50, the installation path may be
different, change accordingly.

C:\Program Files\Phoenix Contact\Software Suite 150

Default installation path for Phoenix Contact PC WORX 6.0 software.
C:\Program Files\Rockwell Software

Default installation path for Rockwell Automation RSLogix 5000 software.
C:\Program Files\Siemens

Default installation path for Siemens SIMATIC STEP 7 5.4 software.
C:\Program Files\Siemens\Automation

Default installation path for Siemens TIA Portal software.

Tips

* When you change the Target IDE value, the value of this parameter changes.

* If you right-click the Subsystem block, the PLC Code > Generate and Import Code
for Subsystem command uses this value to import generated code.

» Ifyour target IDE installation is standard, do not edit this parameter. Leave it as the
default value.

» If your target IDE installation is nonstandard, edit this value to specify the actual
installation path.

» Ifyou change the path and click Apply, the changed path remains for that target IDE
for other models and between MATLAB sessions. To reinstate the factory default, use
the command:

plccoderpref('plctargetidepaths’', 'default"')
Command-Line Information

See plccoderpref.

PLC Coder: General

See Also

“Import Structured Text Code Automatically” on page 1-27

Code Output Directory

Enter a path to the target folder into which code is generated. This option is available on
the PLC Code Generation pane in the Configuration Parameters dialog box.

Settings

Default: plcsrc subfolder in your working folder
Command-Line Information

Parameter: PLC OutputDir

Type: string

Value: string

Default: 'plcsrc'

Tips

» If the target folder path is empty, a default value of . /plcsrc is used as the Code
Output Directory.

+ Ifyou want to generate code in the current folder use . as the output directory.
* The Code Output Directory can have the same name as your current working folder.

See Also

“Generate Structured Text from the Model Window” on page 1-17

Generate Testbench for Subsystem

Specify the generation of test bench code for the subsystem. This option is available on
the PLC Code Generation pane in the Configuration Parameters dialog box.

Settings

Default: off

13-9

13 Configuration Parameters for Simulink PLC Coder Models

13-10

Y1 On
Enables generation of test bench code for subsystem.

Disables generation of test bench code for subsystems.

Command-Line Information
Parameter: PLC GenerateTestbench
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-17

Generate Functions Instead of Function Block

Use this option to control whether the generated Structured Text code contains
Function instead of Function Block. This option is available for only the Phoenix
Contact PC WORX or the PHOENIX CONTACT (previously KW) Software MULTIPROG
target. There are certain cases where you may not be able to generate code with
Function instead of Function Block. For example, if your Simulink subsystem or
MATLAB Function block has internal state or persistent variables. In such cases, the
software issues a diagnostic warning.

This option is available on the PLC Code Generation pane in the Configuration
Parameters dialog box, when the Target IDE is set to Phoenix Contact PC WORX 6.0
or KW-Software MULTIPROG 5.0.

Settings
Default: off

4| On

The generated Structured Text code contains Function instead of Function Block
where possible.

Off
Switch to the default behavior of the software.

PLC Coder: General

Command-Line Information
Parameter: PLC_EmitAsPureFunctions
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-17

Emit Datatype Worksheet Tags for PCWorx

Use this option to control whether datatypeWorksheet tags are represented in code
generated for Phoenix Contact PC WORX target. This option allows you to have finer
control and generate multiple datatypeWorksheet definitions.

This option is available on the PLC Code Generation pane in the Configuration
Parameters dialog box, when the Target IDE is set to Phoenix Contact PC WORX
6.0.

Settings
Default: off
Y1 On
The datatypeWorksheet tags are marked as separate tags in the generated code.

Off
No separate datatypeWorksheet tags are in the generated code.
Command-Line Information
Parameter: PLC EmitDatatypeWorkSheet
Type: string
Value: 'on' | 'off'
Default: 'off'
See Also

“Generate Structured Text from the Model Window” on page 1-17

13-11

13 Configuration Parameters for Simulink PLC Coder Models

13-12

Aggressively Inline Structured Text Function Calls

Using this option, you can control inlining of Structured Text function calls for Rockwell
Automation targets. By default, the software attempts to inline only math functions where
possible. With this option, the software aggressively inlines all function calls so that the
generated code has less number of Function blocks.

This option is available on the PLC Code Generation pane in the Configuration
Parameters dialog box, when the Target IDE is set to Rockwell Automation targets such
as Rockwell Studio 5000: AOI, Rockwell Studio 5000: Routine, Rockwell
RSLogix 5000: AOI, or Rockwell RSLogix 5000: Routine.

Settings
Default: off
Y1 On
Aggressively inlines Structured Text function calls for RSLogix IDE.

Off

Reverts to its default behavior and inlines only math function calls in the generated
code.

Command-Line Information
Parameter:PLC_EnableAggressiveInlining
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

* “Generate Structured Text from the Model Window” on page 1-17
* “Generated Code Structure for Simple Simulink Subsystems” on page 2-2

PLC Coder: Comments

PLC Coder: Comments

& Configuration Parameters: pledemo_simple_subsystern/Configuration (Active) — O >
Solver Overall control

Data Import/Export

Math and Data Types Include comments

» Diagnostics Include block description
Hardware Implementation
Model Referencing Auto generated comments

Simulation Target
» Code Generation
» Coverage ["] show eliminated blocks
» HDL Code Generation
» Design Verifier
¥ PLC Code Generation
Comments

Simulink block / Stateflow object comments

Optimization
Symbels
Report

OK Cancel Help Apply

In this section...

“Comments Overview” on page 13-14

“Include Comments” on page 13-14

“Include Block Description” on page 13-15

“Simulink Block / Stateflow Object Comments” on page 13-15
“Show Eliminated Blocks” on page 13-16

13-13

13 Configuration Parameters for Simulink PLC Coder Models

13-14

Comments Overview

Control the comments that the Simulink PLC Coder software automatically creates and
inserts into the generated code.

See Also

“Generate Structured Text from the Model Window” on page 1-17

Include Comments

Specify which comments are in generated files. This option is available on the PLC Code
Generation > Comments pane in the Configuration Parameters dialog box.

Settings
Default: on

4 On

Places comments in the generated files based on the selections in the Auto
generated comments pane.

If you create links to requirements documents from your model using the Simulink
Requirements software, the links also appear in generated code comments.

Off

Omits comments from the generated files.
Command-Line Information
Parameter: PLC_RTWGenerateComments
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-17

PLC Coder: Comments

Include Block Description

Specify which block description comments are in generated files. This option is available
on the PLC Code Generation > Comments pane in the Configuration Parameters dialog
box.

Settings
Default: on

Y1 On

Places comments in the generated files based on the contents of the block properties
General tab.

Off

Omits block descriptions from the generated files.
Command-Line Information
Parameter: PLC_PLCEnableBlockDescription
Type: string
Value: 'on' | 'off"'
Default: 'on'

See Also

* “Propagate Block Descriptions to Code Comments” on page 1-22
* “Generate Structured Text from the Model Window” on page 1-17

Simulink Block / Stateflow Object Comments

Specify whether to insert Simulink block and Stateflow object comments. This option is
available on the PLC Code Generation > Comments pane in the Configuration
Parameters dialog box.

Settings

Default: on

13-15

13 Configuration Parameters for Simulink PLC Coder Models

13-16

Y1 On

Inserts automatically generated comments that describe block code and objects. The
comments precede that code in the generated file.

Off

Suppresses comments.

Command-Line Information

Parameter: PLC RTWSimulinkBlockComments
Type: string

Value: 'on' | 'off'

Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-17

Show Eliminated Blocks

Specify whether to insert eliminated block comments. This option is available on the PLC
Code Generation > Comments pane in the Configuration Parameters dialog box.

Settings

Default: off

Y1 On

Inserts statements in the generated code from blocks eliminated as the result of
optimizations (such as parameter inlining).

Off
Suppresses statements.

Command-Line Information

Parameter: PLC RTWShowEliminatedStatement
Type: string

Value: 'on' | 'off'

Default: 'off'

PLC Coder: Comments

See Also

“Generate Structured Text from the Model Window” on page 1-17

13-17

13 Configuration Parameters for Simulink PLC Coder Models

PLC Coder: Optimization

-

4
4
4
4

Solver

Data Import/Export
Math and Data Types
Diagnostics

Hardware Implementation
Model Referencing
Simulation Target
Code Generation
Coverage

HDL Code Generation
Design Verifier

¥ PLC Code Generation

Comments
Optimization
Symbels
Report

& Configuration Parameters: pledemo_simple_subsystern/Configuration (Active) — O

Q

Optimization options

Default parameter behavior: |Tunable ~ | | Configure...

Signal storage reuse

Remove code from floating-point to integer conversions that wraps out-of-range values
[] Generate reusable code

[] Inline named constants

|:| Reuse MATLAB Function block variables

Loop unrolling threshold: |5

OK Cancel Help

Apply

In this section...

13-18

“Optimization Overview” on page 13-19
“Default Parameter Behavior” on page 13-19
“Signal Storage Reuse” on page 13-20

“Remove Code from Floating-Point to Integer Conversions That Wraps Out-Of-Range
Values” on page 13-22

“Generate Reusable Code” on page 13-22

PLC Coder: Optimization

In this section...

“Inline Named Constants” on page 13-24
“Reuse MATLAB Function Block Variables” on page 13-25
“Loop Unrolling Threshold” on page 13-25

Optimization Overview
Select the code generation optimization settings.
See Also

“Generate Structured Text from the Model Window” on page 1-17

Default Parameter Behavior

Transform numeric block parameters into constant inlined values in the generated code.
This option is available on the PLC Code Generation > Optimization pane in the
Configuration Parameters dialog box.

Description

Transform numeric block parameters into constant inlined values in the generated code.
Category: Optimization

Settings

Default: Tunable for GRT targets | Inlined for ERT targets

Inlined

Set Default parameter behavior to Inlined to reduce global RAM usage and
increase efficiency of the generated code. The code does not allocate memory to
represent numeric block parameters such as the Gain parameter of a Gain block.
Instead, the code inlines the literal numeric values of these block parameters.

Tunable

Set Default parameter behavior to Tunab'le to enable tunability of numeric block
parameters in the generated code. The code represents numeric block parameters
and variables that use the storage class Auto, including numeric MATLAB variables,
as tunable fields of a global parameters structure.

13-19

13 Configuration Parameters for Simulink PLC Coder Models

13-20

Tips

* Whether you set Default parameter behavior to Inlined or to Tunable, create
parameter data objects to preserve tunability for block parameters. For more
information, see “Create Tunable Calibration Parameter in the Generated Code”
(Simulink Coder).

* When you switch from a system target file that is not ERT-based to one that is ERT-
based, Default parameter behavior sets to Inlined by default. However, you can
change the setting of Default parameter behavior later.

* When a top model uses referenced models, or if a model is referenced by another
model:
+ All referenced models must set Default parameter behavior to Inlined if the

top model has Default parameter behavior set to Inlined.

* The top model can specify Default parameter behavior as Tunable or Inlined.

* If your model contains an Environment Controller block, you can suppress code
generation for the branch connected to the Sim port if you set Default parameter
behavior to Inlined and the branch does not contain external signals.

Command-Line Information

Parameter:PLC_PLCEnableVarReuse

Type: string

Value: 'on' | 'off'

Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-17

Signal Storage Reuse

Reuse signal memory. This option is available on the PLC Code Generation >
Optimization pane in the Configuration Parameters dialog box.

Settings

Default: on

PLC Coder: Optimization

Yl On
Reuses memory buffers allocated to store block input and output signals, reducing the
memory requirement of your real-time program.
Off

Allocates a separate memory buffer for each block's outputs. This allocation makes
block outputs global and unique, which in many cases significantly increases RAM
and ROM usage.

Tips

» This option applies only to signals with storage class Auto.
* Signal storage reuse can occur among only signals that have the same data type.

* Clearing this option can substantially increase the amount of memory required to
simulate large models.

* Clear this option if you want to:

* Debug a C-MEX S-function.

* Use a Floating Scope or a Display block with the Floating display option selected
to inspect signals in a model that you are debugging.

» Ifyou select Signal storage reuse and attempt to use a Floating Scope or floating
Display block to display a signal whose buffer has been reused, an error dialog box
opens.

Command-Line Information
Parameter:PLC_PLCEnableVarReuse
Type: string

Value: 'on' | 'off'

Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-17

13-21

13 Configuration Parameters for Simulink PLC Coder Models

13-22

Remove Code from Floating-Point to Integer Conversions That
Wraps Out-Of-Range Values

Enable code removal for efficient casts. This option is available on the PLC Code
Generation > Optimization pane in the Configuration Parameters dialog box.

Settings
Default: on
Yl On
Removes code from floating-point to integer conversions.
Off
Does not remove code from floating-point to integer conversions.
Tips
Use this parameter to optimize code generation.
Command-Line Information

Parameter: PLC PLCEnableEfficientCast
Type: string

Value: 'on' | 'off'

Default: 'on'

See Also

“Generate Structured Text from the Model Window” on page 1-17

Generate Reusable Code

Using this option, you can generate better reusable code for reusable subsystems. For
instance, if your model contains multiple instances of the same subsystem and some
instances have constant inputs, by default, the generated code contains separate function
blocks for each instance. If you select this option, the software does not consider whether
the inputs to the subsystem are constant and generates one function block for the
multiple instances.

PLC Coder: Optimization

This option is available on the PLC Code Generation > Optimization pane in the
Configuration Parameters dialog box.

Settings
Default: off

Y1 On
Generates better reusable code for reusable subsystems.

Off

Reverts to its default behavior. Instead of a single reusable function block, the
software generates separate function blocks for individual instances of a reusable
subsystem because of certain differences in their inputs.

Tips

» Ifyou find multiple function blocks in your generated code for multiple instances of
the same subsystem, select this option. The software performs better identification of
whether two instances of a subsystem are actually the same and whether it can
combine the multiple blocks into one reusable function block.

» If different instances of a subsystem have different values of a block parameter, you
cannot generate reusable code. Clear this option or use the same block parameter for
all instances.

» Despite selecting this option, if you do not see reusable code for different instances of
a subsystem, you can determine the reason. To determine if two reusable subsystems
are identical, the code generator internally uses a checksum value. You can compare
the checksum values for two instances of a subsystem and investigate why they are
not identical.

To get the checksum values for the two instances that you expect to be identical, use
the function Simulink.SubSystem.getChecksum. If the checksum values are
different, investigate the checksum details to see why the values are not identical.

Command-Line Information
Parameter:PLC_GenerateReusableCode
Type: string

Value: 'on' | 'off'
Default: 'of '

13-23

13 Configuration Parameters for Simulink PLC Coder Models

13-24

See Also

* “Generate Structured Text from the Model Window” on page 1-17

* “Generated Code Structure for Reusable Subsystems” on page 2-4

Inline Named Constants

Using this option, you can control inlining of global named constants. By default, the
generated code contains named ssMethodType constants for internal states or other
Simulink semantics. If you select this option, the software replaces the named constants
with its integer value.

This option is available on the PLC Code Generation > Optimization pane in the
Configuration Parameters dialog box.

Settings
Default: off
41 On
Inlines named constants.

Off
Reverts to its default behavior and uses named constants in the generated code.
Command-Line Information
Parameter:PLC InlineNamedConstant
Type: string
Value: 'on' | 'off'
Default: 'off"'

See Also

* “Generate Structured Text from the Model Window” on page 1-17

* “Generated Code Structure for Simple Simulink Subsystems” on page 2-2

PLC Coder: Optimization

Reuse MATLAB Function Block Variables

You can use this option to enable reuse of MATLAB function block variables in the
generated code.

This option is available on the PLC Code Generation > Optimization pane in the
Configuration Parameters dialog box.

Settings
Default: off
Y1 On
Generates code that reuses MATLAB Function block variables where appropriate.

Off
Reverts to its default behavior and does not reuse variables in the generated code.
Command-Line Information
Parameter:PLC_ ReuseMLFcnVariable
Type: string
Value: 'on' | 'off'
Default: 'off'
See Also

* “Generate Structured Text from the Model Window” on page 1-17
* “Generated Code Structure for MATLAB Function Block” on page 2-14

Loop Unrolling Threshold

Specify the minimum signal or parameter width for which a for loop is generated. This
option is available on the PLC Code Generation > Optimization pane in the
Configuration Parameters dialog box.

Settings

Default: 5

13-25

13 Configuration Parameters for Simulink PLC Coder Models

13-26

Specify the array size at which the code generator begins to use a for loop instead of
separate assignment statements to assign values to the elements of a signal or parameter
array.

When the loops are perfectly nested loops, the code generator uses a for loop if the
product of the loop counts for all loops in the perfect loop nest is greater than or equal to
this threshold.

Command-Line Information
Parameter: PLC RollThreshold
Type: string

Value: any valid value

Default: '5"

See Also

“Generate Structured Text from the Model Window” on page 1-17

PLC Coder: Symbols

PLC Coder: Symbols

& Configuration Parameters: plcdemo_simple_subsystem/Configuration (Active)

Q

-

4
4
[
4

Solver

Data Import/Export
Math and Data Types
Diagnostics

Hardware Implementation
Model Referencing
Simulation Target
Code Generation
Coverage

HDL Code Generation
Design Verifier

¥ PLC Code Generation

Comments
Optimization
Symbols
Report

Identifier naming rules

[] Use subsystem instance name as function block instance name
[| override target default maximum identifier length
Maximum identifier length: 31

[] Override target default enum name behavior

Code interface

[| Remove top level subsystem ssmethod type

[| Generate logging code

Externally defined symbols

Symbol Names:

Reserved symbol name list

[] Use the same reserved names as Simulation Target

Reserved names:

OK Cancel

Help Apply

In this section...

“Symbols Overview” on page 13-28

“Override Target Default Maximum Identifier Length” on page 13-29
“Maximum Identifier Length” on page 13-30

“Use Subsystem Instance Name as Function Block Instance Name” on page 13-28

13-27

13 Configuration Parameters for Simulink PLC Coder Models

In this section...

“Override Target Default enum Name Behavior” on page 13-30
“Remove Top-level Subsystem ssmethod Type” on page 13-31
“Generate Logging Code” on page 13-32

“Use the Same Reserved Names as Simulation Target” on page 13-33

“Reserved Names” on page 13-33
“Externally Defined Symbols” on page 13-34
“Preserve Alias Type Names for Data Types” on page 13-35

Symbols Overview
Select the automatically generated identifier naming rules.

See Also

“Generate Structured Text from the Model Window” on page 1-17

Use Subsystem Instance Name as Function Block Instance
Name

Specify how you want the software to name the Function block instances it generates for
the subsystem. When you select this option, the software uses the subsystem instance

name as the name of the Function blocks in the generated code. By default, the software
generates index-based instance names.

This option is available on the PLC Code Generation > Symbols pane in the
Configuration Parameters dialog box.

Settings
Default: off
41 On

Uses the subsystem instance name as the name of the Function block instances in the
generated code.

13-28

PLC Coder: Symbols

Off
Uses auto-generated index-based instance names for the Function blocks in the
generated code.

Command-Line Information

Parameter: PLC FBUseSubsystemInstanceName
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-17

Override Target Default Maximum Identifier Length

If your custom target IDE version supports long name identifiers, you can use this option
along with the Maximum identifier length to specify the maximum number of
characters in the generated function, type definition, and variable names. By default, the
software complies with the maximum identifier length of standard versions of the target
IDE and ignores unsupported values specified in the Maximum identifier length.

This option is available on the PLC Code Generation > Symbols pane in the
Configuration Parameters dialog box.

Settings
Default: off
Y1 On
Override target default maximum identifier length in the generated code.

Off

The generated code uses the default identifier length of the target IDE.
Command-Line Information
Parameter: PLC OverrideDefaultNameLength

Type: string
Value: 'on' | 'off'

13-29

13 Configuration Parameters for Simulink PLC Coder Models

13-30

Default: 'off'
See Also

“Generate Structured Text from the Model Window” on page 1-17

Maximum lIdentifier Length

Specify the maximum number of characters in generated function, type definition, and
variable names. This option is available on the PLC Code Generation > Symbols pane
in the Configuration Parameters dialog box.

Settings
Default: 31
Minimum: 31
Maximum: 256

You can use this parameter to limit the number of characters in function, type definition,
and variable names. Many target IDEs have their own restrictions for these names.
Simulink PLC Coder complies with target IDE limitations.

Command-Line Information
Parameter: PLC RTWMaxIdLength
Type: int

Value: 31 to 256

Default: 31

See Also

“Generate Structured Text from the Model Window” on page 1-17

Override Target Default enum Name Behavior

Use this option to enable enum names to be used as the symbols names instead of enum
values. The PLC target IDE must support enum type.

This option is available on the PLC Code Generation > Symbols pane in the
Configuration Parameters dialog box.

PLC Coder: Symbols

Settings
Default: off

Y1 On

Override target default enum behavior and always have enum names instead of enum
values.

Off
The generated code uses the enum behavior of the target IDE.
Command-Line Information
Parameter: PLC_GenerateEnumSymbolicName
Type: string
Value: 'on' | 'off'
Default: 'off'
See Also

“Generate Structured Text from the Model Window” on page 1-17

Remove Top-level Subsystem ssmethod Type

Use this option to remove the ssmethod type from the top-level subsystem argument
interface. When this option is enabled, the software removes the ssmethod type and
converts the subsystem initialization code from switch case statement to conditional if
statement. As a result, the generated code has the same interface as the model
subsystem.

This option is available on the PLC Code Generation > Symbols pane in the
Configuration Parameters dialog box.

Settings

Default: off

4 On

Remove top level function block ssmethod type in generated code.

13-31

13 Configuration Parameters for Simulink PLC Coder Models

13-32

Off
Generated code contains ssmethod type Function block and switch case statements.

Command-Line Information

Parameter: PLC RemoveTopFBSSMethodType
Type: string

Value: 'on' | 'off'

Default: 'of '

See Also

“Generate Structured Text from the Model Window” on page 1-17

Generate Logging Code

With this option, you can generate code with logging instrumentation to collect run-time
data on supported PLC targets. The PLC target IDEs must have support for inout
variables. For Rockwell Automation targets, you can set up an Open Platform
Communications (OPC) server and use the Simulation Data Inspector (SDI) in Simulink to
visualize and monitor the logging data.

This option is available on the PLC Code Generation > Symbols pane in the
Configuration Parameters dialog box.

Settings

Default: off

Y1 On
Generate Function block logging code for supported targets.

Off
No logging instrumentation is included in the generated code.

Command-Line Information
Parameter: PLC GeneratelLoggingCode
Type: string

Value: 'on' | 'off'

Default: 'off'

PLC Coder: Symbols

See Also

“Generate Structured Text from the Model Window” on page 1-17

Use the Same Reserved Names as Simulation Target

Specify whether to use the same reserved names as those specified in the Reserved
names field of the Simulation Target pane in the Configuration Parameters dialog box.
This option is available on the PLC Code Generation > Symbols pane in the
Configuration Parameters dialog box.

Settings
Default: off

Y1 On

Uses the same reserved names as those specified in the in the Reserved names filed
of the Simulation Target pane in the Configuration Parameters dialog box.

Off
Does not use the same reserved names as those specified in the Simulation Target >
Symbols pane pane.

Command-Line Information

Parameter: PLC RTWUseSimReservedNames
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-17

Reserved Names
Enter the names of variables or functions in the generated code that you do not want to

be used. This option is available on the PLC Code Generation > Symbols pane in the
Configuration Parameters dialog box.

13-33

13 Configuration Parameters for Simulink PLC Coder Models

13-34

Settings
Default: ()

Changes the names of variables or functions in the generated code to avoid name
conflicts with identifiers in custom code. Reserved names must be fewer than 256
characters in length.

Tips
o Start each reserved name with a letter or an underscore.

* Each reserved name must contain only letters, numbers, or underscores.

* Separate the reserved names by using commas or spaces.
Command-Line Information

Parameter: PLC_RTWReservedNames

Type: string

Value: string

Default: '

See Also

“Generate Structured Text from the Model Window” on page 1-17

Externally Defined Symbols

Specify the names of identifiers for which you want to suppress definitions. This option is
available on the PLC Code Generation > Symbols pane in the Configuration Parameters
dialog box.

Settings

Default: ()

Suppresses the definition of identifiers, such as those for function blocks, variables,
constants, and user types in the generated code. This suppression allows the generated

code to refer to these identifiers. When you import the generated code into the PLC IDE,
you must provide these definitions.

PLC Coder: Symbols

Tips
o Start each name with a letter or an underscore.

* Each name must contain only letters, numbers, or underscores.
* Separate the names by using spaces or commas.

Command-Line Information

Parameter: PLC ExternalDefinedNames
Type: string

Value: string

Default: '

See Also

* “Generate Structured Text from the Model Window” on page 1-17
* “Integrate Externally Defined Symbols” on page 8-2

* Integrating User Defined Function Blocks, Data Types, and Global
Variables into Generated Structured Text

Preserve Alias Type Names for Data Types

Specify that the generated code must preserve alias data types from your model. This
option is available on the PLC Code Generation > Symbols pane in the Configuration
Parameters dialog box.

Using the Simulink.AliasType class, you can create an alias for a built-in Simulink
data type. If you assign an alias data type to signals and parameters in your model, when
you use this option, the generated code uses your alias data type to define variables
corresponding to the signals and parameters.

For instance, you can create an alias SAFEBOOL from the base data type boolean. If you
assign the type SAFEBOOL to signals and parameters in your model, the variables in the
generated code corresponding to those signals and parameters also have the type
SAFEBOOL. Using this alias type SAFEBOOL, you can conform to PLCopen safety
specifications that suggest using safe data types for differentiation between safety-
relevant and standard signals.

Settings

Default: off

13-35

matlab:plcdemo_external_symbols
matlab:plcdemo_external_symbols

13 Configuration Parameters for Simulink PLC Coder Models

13-36

Yl On
The generated code preserves alias data types from your model.

For your generated code to be successfully imported to your target IDE, the IDE must
support your alias names.

Off

The generated code does not preserve alias types from your model. Instead, the base
type of the Simulink.AliasType class determines the variable data type in
generated code.

Tips

The alias that you define for a Simulink type must have the same semantic meaning as the
base Simulink type. It must not be a data type already supported in Structured Text and
semantically different from the base Simulink type. For instance, WORD is a data type
supported in Structured Text but is semantically different from an integer type. If you
define an alias WORD for a Simulink built-in integer type, for instance uint16, and
preserve the alias name, the type WORD that appears in your generated code is used
semantically as a WORD and not as an INT. The generated code has a different meaning
from the semantics of the model.

Command-Line Information
Parameter: PLC PreserveAliasType
Type: string

Value: 'on' | 'off'

Default: 'off'

PLC Coder: Report

PLC Coder: Report

& Configuration Parameters: plcdemo_simple_subsystem/Configuration (Active) - O X
Solver Code generation report

Data Import/Export
Math and Data Types
Diagnostics [] Generate model web view

Generate traceability report

L

Hardware Implementation Open report automatically

Model Referencing

Simulation Target

Code Generation

Coverage

HDL Code Generation

Design Verifier

¥ PLC Code Generation
Comments

4
3
4
4

Optimization
Symbols
Report

OK Cancel Help Apply

In this section...

“Report Overview” on page 13-38

“Generate Traceability Report” on page 13-38
“Generate Model Web View” on page 13-39
“Open Report Automatically” on page 13-39

13-37

13 Configuration Parameters for Simulink PLC Coder Models

13-38

Report Overview

After code generation, specify whether a report must be produced. Control the
appearance and contents of the report.

The code generation report shows a mapping between Simulink model objects and
locations in the generated code. The report also shows static code metrics about files,
global variables, and function blocks.

See Also

“Generate Structured Text from the Model Window” on page 1-17

Generate Traceability Report

Specify whether to create a code generation report. This option is available on the PLC
Code Generation > Report pane in the Configuration Parameters dialog box.

Settings
Default: off
4 On
Creates code generation report as an HTML file.

Off
Suppresses creation of code generation report.
Command-Line Information
Parameter: PLC_GenerateReport
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-17

PLC Coder: Report

Generate Model Web View

To navigate between the code and the model within the same window, include the model
web view in the code generation report. This option is available on the PLC Code
Generation > Report pane in the Configuration Parameters dialog box.

You can share your model and generated code outside of the MATLAB environment. You
must have a Simulink Report Generator to include a Web view (Simulink Report
Generator) of the model in the code generation report.

Settings
Default: Off
Y1 On
Includes model Web view in the code generation report.

Off
Omits model Web view in the code generation report.
Command-Line Information
Parameter: PLC GenerateWebView
Type: string
Value: 'on' | 'off'
Default: 'off"'
See Also

“Generate Structured Text from the Model Window” on page 1-17

Open Report Automatically

Specify whether to open the code generation report automatically. This option is available
on the PLC Code Generation > Report pane in the Configuration Parameters dialog
box.

Settings

Default: off

13-39

13 Configuration Parameters for Simulink PLC Coder Models

Yl On
Opens the code generation report as an HTML file.

Off
Suppresses opening of the code generation report.

Command-Line Information
Parameter: PLC LaunchReport
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

“Generate Structured Text from the Model Window” on page 1-17

13-40

External Mode

+ “External Mode Logging” on page 14-2
* “Generate Structured Text Code with Logging Instrumentation” on page 14-3

* “Use the Simulation Data Inspector to Visualize and Monitor the Logging Data”
on page 14-7

14 External Mode

External Mode Logging

14-2

With external mode logging, you can generate code from Simulink models with logging
instrumentation to collect run-time data on PLC targets. You can enable this feature by
using Generate logging code option in the configuration parameters or by using the
PLC GeneratelLoggingCode command-line property. The PLC target IDEs must have
support for inout variables. You can generate logging code for one of the following
target PLC IDEs:

* 3S-Smart Software Solutions CoDeSys Version 2.3

* 3S-Smart Software Solutions CoDeSys Version 3.5

* Rockwell Automation RSLogix 5000

* Rockwell Automation Studio 5000

* Beckhoff TwinCAT 2.11

* Beckhoff TwinCAT 3

* Generic

* PLCopen XML

* Rexroth IndraWorks

* OMRON Sysmac Studio

For Rockwell Automation targets, you can set up an Open Platform Communications
(OPC) server and use the Simulation Data Inspector in Simulink to visualize and monitor
the logging data. The OPC Toolbox is required to run the external mode visualization.

See Also

More About

. “Generate Structured Text Code with Logging Instrumentation” on page 14-3

. “Use the Simulation Data Inspector to Visualize and Monitor the Logging Data” on
page 14-7

Generate Structured Text Code with Logging Instrumentation

Generate Structured Text Code with Logging
Instrumentation

This topic assumes that you have generated Structured Text code from a Simulink model.

If you have not yet done so, see “Generate Structured Text from the Model Window” on
page 1-17.

The example in this topic shows generated code for the Rockwell Automation Studio 5000
IDE. Generated code for other IDE platforms looks different.

1 Create a Simulink model ext demol.s1x containing a top-level subsystem with two
child subsystems S1, S2, a MATLAB Function block and a Stateflowchart.

|¥a| ext_demol b [Ba| Subsystem b -

2 The S1, S2 blocks are identical and contain simple feedback loop.The Stateflow chart
contains a simple state machine.

14-3

14 External Mode

T
[P et_demol b Py Subsystem P [Pa|S1

4@
|

3 The MATLAB function block implements the following code:

function y = fcn
persistent i;

if isempty(i)
i=0;
end

if (i>20)
i=20;
else
i=i+1;
end

y = sin(pi*i/10);

14-4

Generate Structured Text Code with Logging Instrumentation

Select the top-level subsystem and open the configuration parameters window. On
the PLC Code Generation pane, select the Target IDE as Rockwell Studio
5000: AOI. On the Symbols pane, select Generate logging code.

& Configuration Parameters: ext_demol/Configuration (Active) == a >
Solver Identifier naming rules <

Data Impom/Export

Math and Data Types Use subsystem Instance name as function block instance name

Diagnostics Override target default maximum kdentifier length
Hardware Implemeantation
Model Referencing
Simulation Target

Maximum identifier length
Override target default enum name behavior

» Code Generation
Code inferfaca

» Coverage
¥ PLC Code Generation Remave top level subsystem ssmethad type
Comments ;
i +| Generate logging coael
Optimization
Symbols
ym Externally defined symbols
Report
Ladder Symbol Names

Reserved symbol name list

T L T TSI S—

oK Cancel Help Apply

In the model, select the top subsystem block, right-click, and choose PLC
Code>Generate Code for Subsystem.

This operation generates L5X AOI code for the top subsystem block and the children
S1, S2, MATLAB function, and Stateflow chart blocks. In the code folder, it also
generates plc_log data.mat which has the logging data information.

14-5

14 External Mode

Llr

& Find: w W Malch Caae

Code Metrics Report

Generated Files

; j W | logging data in-out
var argument

'

»

L4 >

0K Help

6 After generating the code, you can download and run the logging code from the PLC
IDE.

See Also

More About
. “External Mode Logging” on page 14-2

. “Use the Simulation Data Inspector to Visualize and Monitor the Logging Data” on
page 14-7

14-6

Use the Simulation Data Inspector to Visualize and Monitor the Logging Data

Use the Simulation Data Inspector to Visualize and
Monitor the Logging Data

This workflow is supported for Rockwell Automation targets. This workflow shows you
how to set up an Open Platform Communications (OPC) server and use the Simulation
Data Inspector in Simulink to visualize and monitor the logging data.

Set Up and Download Code to the Studio 5000 IDE

The following procedure shows you how to create a Studio 5000 project to import the
generated logging code. You can use a similar procedure to import the generated code
into an existing project.

1 Start the Studio 5000 IDE and create project with the name ext demol.

2 Import the generated ext demo.L5X to the Add-On Instructions tree node of the
project.

3 Inthe MainProgram node, delete the ladder MainRoutine and create an ST
MainRoutine node.

New Routine ==

Nane ManRoutnd |

Descrption: - Cancel

4 In ST MainRoutine, define the following tags:

Tag Name Tag Type
i0_Subsystem Subsystem

i® Subsystem val Subsystem log
Init BOOL

Y1 REAL

Y2 REAL

Y3 DINT

14-7

14 External Mode

14-8

7

The tag definition looks like the following in Studio 5000 IDE, i@ Subsystem tag is
the instance of the top subsystem AOI, the 10 Subsystem val tag is the log data
with structure type Subsystem log. Set the initial value of init tagto 1.

| [Name =312 |Usage |miasFor [BaseT [DataType |escaption | Extemal Acc [Consta [Styie: [|
+10_Subsystem Local Subsystem ReadWiite
[|+i0_subsystem_val Local Subsystem_log Read/Wiite
int [Local | BOOL | [Reaawite |
[| v Local REAL ReadWiite
[| v Local REAL ReadWiite

WG Local | DINT Readwnte

o

[Decimal
Float
Float

]
8]
o
]
O [Decmal
o

Double-click MainRoutine tree node and type in the following code. The statement
Subsystem(i@ Subsystem, 23, Y1, Y2, Y3, i0 Subsystem val) calls the
logging method (ssmethod value=23) to log in data to the 10 Subsystem val
tag.

Compile the project in Studio 5000 IDE, connect, and download to the PLC target.

Configure RSLinx OPC Server

1

3

Start RSLinx Classic Gateway, select the menu item DDE/OPC->Topic
Configuration.

In the resulting pop-up dialog box, create a topic ext demol by using the New
button. Select the target PLC from the PLC list.

Puciect Delak
| TopoLat

e _demal

How e Dete sosty Dore et

Click Yes button to update the topic (ext demol).

Use the Simulation Data Inspector to Visualize and Monitor the Logging Data

To verify that the log data is set up on the OPC server, select the menu item Edit-
>Copy DDE/OPC Link.The i@ Subsystem val tag for log data must be shown on
the RSLinx OPC Server.

Copy DDE/OPC Link ? x|
This etz an EGH/Copy Link. Other progeams may use thisto rtise 8 DDE/DPC conneclion. Use thee
EGUPse Lrk command

=l \

RSLinx OPC Server (Node: <Local>)

rt
% 10_MATLABFunction
@051
@il51

Data Table Address: |

Block Se: [1
CobmnsperRow [T
[3 Cancel Help

Use PLC External Mode Commands to Stream and Display Live
Log Data

After the RSLinx OPC Server is configured, you can use the PLC external mode
commands to connect to the server, stream, and display live logging data on the Simulink
Data Inspector. The log data information is in the plc_log data.mat file which can be
found in plcsrc folder. You can use the plcdispextmodedata function to display the
contents of the MAT-file. In the MATLAB command, type:

>>cd plcsrc
>>plcdispextmodedata plc_log data.mat

Log
#1:
#2:
#3:
#4:
#5:
#6:
#7:
#8:
#9:

#10:
#11:
#12:
#13:

data:

Y1: LREAL
Y2: LREAL
Y3: LREAL

io Chart.out: DINT

io Chart.ChartMode: DINT

io Chart.State A: BOOL

io Chart.State B: BOOL

io Chart.State C: BOOL

io Chart.State D: BOOL

io Chart.is active c3 Subsystem: USINT
io MATLABFunction.y: LREAL

io MATLABFunction.i: LREAL

io Sl.y: LREAL

14-9

14 External Mode

14-10

#14: io Sl.UnitDelay DSTATE: LREAL
#15: 11 S1.y: LREAL
#16: 11 S1.UnitDelay DSTATE: LREAL

The format for the log data information is index number, name, and type. The log data for
non-top subsystem function block output and state variables are named using the dot
notation to represent the function block instances that own the data. The index and name
of the log data can be used with the plcrunextmode command to specify a subset of log
data for streaming and visualization.

Use the plcrunextmode function to connect to the OPC server and stream log data. For
example, executing plcrunextmode ('localhost', 'studio5000',
‘ext_demol', 'plc_log data.mat'); command streams live log data for the
example model in to Simulink Data Inspector.

ia
L4

The plcrunextmode command continues to run and stream log data. To exit streaming,
type Ctrl-C in MATLAB to stop.

See Also

plcdispextmodedata | plcrunextmode

More About

. “External Mode Logging” on page 14-2
. “Generate Structured Text Code with Logging Instrumentation” on page 14-3

